Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization zirconium

Kretschmer, W.P., Hessen, B., Noor, A. et al. (2007) Highly active/selective and adjustable zirconium polymerization catalysts stabilized by aminopyridinato ligands. Journal of Organometallic Chemistry, 692,4569 579. [Pg.310]

The preparation and structure determination of ferrocene marked the beginning of metallocene chemistry Metallocenes are organometallic compounds that bear cyclo pentadiemde ligands A large number are known even some m which uranium is the metal Metallocenes are not only stucturally interesting but many of them have useful applications as catalysts for industrial processes Zirconium based metallocenes for example are the most widely used catalysts for Ziegler-Natta polymerization of alkenes We 11 have more to say about them m Section 14 15... [Pg.610]

Section 14 15 Coordination polymerization of ethylene and propene has the biggest eco nomic impact of any organic chemical process Ziegler-Natta polymer ization IS carried out using catalysts derived from transition metals such as titanium and zirconium tt Bonded and ct bonded organometallic com pounds are intermediates m coordination polymerization... [Pg.617]

Other applications of zirconium tetrafluoride are in molten salt reactor experiments as a catalyst for the fluorination of chloroacetone to chlorofluoroacetone (17,18) as a catalyst for olefin polymerization (19) as a catalyst for the conversion of a mixture of formaldehyde, acetaldehyde, and ammonia (in the ratio of 1 1 3 3) to pyridine (20) as an inhibitor for the combustion of NH CIO (21) in rechargeable electrochemical cells (22) and in dental applications (23) (see Dentalmaterials). [Pg.262]

Metallocene Catalysts. Polymerization of cycloolefins with Kaminsky catalysts (combinations of metallocenes and methylaluminoxane) produces polymers with a completely different stmcture. The reactions proceeds via the double-bond opening in cycloolefins and the formation of C—C bonds between adjacent rings (31,32). If the metallocene complexes contain bridged and substituted cyclopentadienyl rings, such as ethylene(hisindenyl)zirconium dichloride, the polymers are stereoregular and have the i j -diisotactic stmcture. [Pg.431]

Others. Oxahc acid is used for the production of cobalt, as a raw material of various agrochemicals and pharmaceuticals, for the manufacture of electronic materials (76—83), for the extraction of tungsten from ore (84), for the production of metal catalysts (85,86), as a polymerization initiator (87—89), and for the manufacture of zirconium (90) and beryhium oxide (91). [Pg.462]

Zirconium [7440-67-7] is classified ia subgroup IVB of the periodic table with its sister metallic elements titanium and hafnium. Zirconium forms a very stable oxide. The principal valence state of zirconium is +4, its only stable valence in aqueous solutions. The naturally occurring isotopes are given in Table 1. Zirconium compounds commonly exhibit coordinations of 6, 7, and 8. The aqueous chemistry of zirconium is characterized by the high degree of hydrolysis, the formation of polymeric species, and the multitude of complex ions that can be formed. [Pg.426]

Zirconium forms anhydrous compounds in which its valence may be 1, 2, 3, or 4, but the chemistry of zirconium is characterized by the difficulty of reduction to oxidation states less than four. In aqueous systems, zirconium is always quadrivalent. It has high coordination numbers, and exhibits hydrolysis which is slow to come to equiUbrium, and as a consequence zirconium compounds in aqueous systems are polymerized. [Pg.427]

Hydroxyl Compounds. The aqueous chemistry of zirconium is complex, and in the past its understanding was compHcated by differing interpretations. In a study of zirconium oxide chloride and zirconium oxide bromide, the polymeric cation [Zr4(OH)g (H20)jg was identified (189) the earlier postulated moiety [Zr=0] was discarded. In the tetramer, the zirconium atoms are coimected by double hydroxyl bridges (shown without the coordinating water molecules) ... [Pg.436]

The tetramer exists in two-molal zirconium chloride and nitrate solutions, but it polymerizes into cross-linked chains on hydrolysis (190—191) in strong acid solutions, the hydroxyl bridges can be replaced by other anions to form trimers (192) and monomers (192—193). [Pg.436]

Zirconium—ally complexes also have catalytic properties. Tetraally zirconium [12090-34-5] on a siUca substrate catalyzes ethylene polymerization (265). Supported on sihca, ZrR (R = allyl or neopentyl) catalyzes olefin isomerization (266). [Pg.441]

Collins and coworkers applied the bis(tetrahydroindenyl)zirconium triflate 32, which is used as a polymerization catalyst, to the asymmetric Diels-Alder reaction [50] (Scheme 1.61). A remarkable solvent effect was observed - although only a low optical yield was obtained in CH2CI2, high optical purity (91% ee) was realized in 2-nitropropane by use of only 1 mol% of the catalyst. The catalyst is also effective for crotonoyloxazolidinone, giving the cycloadduct in 90% ee. [Pg.40]

The ethylene polymerization was observed (9a) also in the presence of c-organometallic compounds of titanium and zirconium, containing such ligands as -CH i(CH3) , -CH(C H6)Si(CH3)3, -CH2C(CH3)3,... [Pg.185]

Recently some information became available on a new type of highly active one-component ethylene polymerization catalyst. This catalyst is prepared by supporting organometallic compounds of transition metals containing different types of organic ligands [e.g. benzyl compounds of titanium and zirconium 9a, 132), 7r-allyl compounds of various transition metals 8, 9a, 133), 7r-arene 134, 185) and 71-cyclopentadienyl 9, 136) complexes of chromium]. [Pg.187]

In order to obtain compounds with Ti-O-P and Zr-O-P units, the hexaethoxy-derivative, NsPaCOEOg, was treated with titanium and zirconium tetrachlorides. In each case, hygroscopic solids of the type NaPaCOEOiOaMCU (M = Ti or Zr) and ethyl chloride were obtained. The degree of polymerization of these solids was 1.6—1.8, and on the basis of their i.r. and n.m.r. spectra, two alternative structures, (46) and (47), were proposed. In an alternative route to the same type of compound, N3P3CI6 was treated with tetra-n-butoxytitanium in o-xylene. Butyl chloride was liberated and a solid was obtained which has been assigned the structure (48). Its thermal decomposition was studied by differential thermal analysis. [Pg.219]


See other pages where Polymerization zirconium is mentioned: [Pg.1]    [Pg.221]    [Pg.141]    [Pg.1]    [Pg.221]    [Pg.141]    [Pg.434]    [Pg.434]    [Pg.298]    [Pg.356]    [Pg.262]    [Pg.254]    [Pg.398]    [Pg.398]    [Pg.411]    [Pg.430]    [Pg.6]    [Pg.133]    [Pg.493]    [Pg.45]    [Pg.411]    [Pg.610]    [Pg.967]    [Pg.968]    [Pg.974]    [Pg.327]    [Pg.185]    [Pg.185]    [Pg.187]    [Pg.139]    [Pg.86]    [Pg.87]    [Pg.331]    [Pg.332]    [Pg.333]    [Pg.59]    [Pg.73]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Zirconium alkyl halides, polymerization

Zirconium catalyst in alkene polymerization

Zirconium phosphonate polymerization

© 2024 chempedia.info