Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc hydrolysis

ZnO particle morphologies are very complex and diversiform in comparison with Ti02. Thus, monodispersed ZnO particles with well-defined morphological characteristics, such as spherical, ellipsoidal, needle, prismatic, and rod-like shapes, have been obtained. Aggregates composed of these basic shape particles have also been achieved. The methods used for synthesis of these ZnO powders include alkali precipitation [214-216], thermal decomposition [217], hydrothermal synthesis [218], organo-zinc hydrolysis [219], spray pyrolysis [220], and other routes. [Pg.444]

It was first described in 1608 when it was sublimed out of gum benzoin. It also occurs in many other natural resins. Benzoic acid is manufactured by the air oxidation of toluene in the liquid phase at 150°C and 4-6 atm. in the presence of a cobalt catalyst by the partial decarboxylation of phthalic anhydride in either the liquid or vapour phase in the presence of water by the hydrolysis of benzotrichloride (from the chlorination of toluene) in the presence of zinc chloride at 100°C. [Pg.56]

This preparation illustrates the Reformatsky reaction, which consists in the interaction of a carbonyl compound, an a-halogen ester (e.g., ethyl bromo-acetate) and zinc In the presence of ether or benzene, followed by hydrolysis. [Pg.874]

Thus reduction of the 5-thiocyanato group of 151 by zinc (333, 360, 361) or aqueous sodium sulfide (348. 362), hydrolysis of the thiouronium group (7, 363, 364), and deacetylation of the 5-acetylthiothiazole with cold piperidine (365) have been performed to yield the 5-mercapto-thiazole (Scheme 78). It must be pointed out that depending on the experimental conditions, bis(5-thiazolyl(sulfide may be observed as a byproduct (363, 365). Thus 5-amino-4-methylthiazole (152) treated with... [Pg.416]

Aldehydes are easily oxidized to carboxylic acids under conditions of ozonide hydroly SIS When one wishes to isolate the aldehyde itself a reducing agent such as zinc is included during the hydrolysis step Zinc reduces the ozonide and reacts with any oxi dants present (excess ozone and hydrogen peroxide) to prevent them from oxidizing any aldehyde formed An alternative more modem technique follows ozone treatment of the alkene m methanol with reduction by dimethyl sulfide (CH3SCH3)... [Pg.263]

Sabinene and carene are isomeric natural products with the molecular formula CjoHig (a) Ozonolysis of sabinene followed by hydrolysis in the presence of zinc gives compound A What IS the structure of sabinene" What other compound is formed on ozonolysis" (b) Ozonoly SIS of A carene followed by hydrolysis in the presence of zinc gives compound B What is the structure of A carene" ... [Pg.279]

This cleavage reaction is more often seen in structural analysis than in synthesis The substitution pattern around a dou ble bond is revealed by identifying the carbonyl containing compounds that make up the product Hydrolysis of the ozonide intermediate in the presence of zinc (reductive workup) permits aide hyde products to be isolated without further oxidation... [Pg.710]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

Many organic peroxides of metals have been hydrolyzed to alkyl hydroperoxides. The alkylperoxy derivatives of aluminum, antimony, arsenic, boron, cadmium, germanium, lead, magnesium, phosphoms, silicon, tin, and zinc yield alkyl hydroperoxides upon hydrolysis (10,33,60,61). [Pg.105]

Alkyl Isoquinolines. Coal tar contains small amounts of l-methylisoquinoline [1721-93-3] 3-methylisoquinoline [1125-80-0] and 1,3-dimetliylisoquinoline [1721-94-4J. The 1- and 3-methyl groups are more reactive than others in the isoquinoline nucleus and readily oxidize with selenium dioxide to form the corresponding isoquinoline aldehydes (174). These compounds can also be obtained by the hydrolysis of the dihalomethyl group. The 1- and 3-methyhsoquinolines condense with benzaldehyde in the presence of zinc chloride or acetic anhydride to produce 1- and 3-styryhsoquinolines. Radicals formed by decarboxylation of carboxyUc acids react to produce 1-aIkyhsoquinolines. [Pg.398]

The addition of stabilizers to tetrachloroethylene inhibits corrosion of aluminum, iron, and zinc which otherwise occurs in the presence of water (12). Where water in excess of the solubiUty limit is present, forming separate layers, hydrolysis and corrosion rates increase. System design and constmction materials should consider these effects. [Pg.28]

Many carbamates have been used as protective groups. They are arranged in this chapter in order of increasing complexity of stmcture. The most useful compounds do not necessarily have the simplest stmctures, but are /-butyl (BOC), readily cleaved by acidic hydrolysis benzyl (Cbz or Z), cleaved by catalytic hy-drogenolysis 2,4-dichlorobenzyl, stable to the acid-catalyzed hydrolysis of benzyl and /-butyl carbamates 2-(biphenylyl)isopropyl, cleaved more easily than /-butyl carbamate by dilute acetic acid 9-fluorenylmethyl, cleaved by /3-elimination with base isonicotinyl, cleaved by reduction with zinc in acetic acid 1-adamantyl, readily cleaved by trifluoroacetic acid and ally], readily cleaved by Pd-catalyzed isomerisation. [Pg.316]

The TCBOC group is stable to the alkaline hydrolysis of methyl esters and to the acidic hydrolysis of r-butyl esters. It is rapidly cleaved by the supemucleophile lithium cobalt(I)phthalocyanine, by zinc in acetic acid, and by cobalt phthalocy-anine (0.1 eq., NaBH4, EtOH, 77-90% yield). [Pg.324]

In seawater, HCO3 ions lead to surface films and increased polarization. In aqueous solutions low in salt and with low loading of the anodes, less easily soluble basic zinc chloride [10] and other basic salts of low solubility are formed. In impure waters, phosphates can also be present and can form ZnNH4P04, which is very insoluble [11]. These compounds are only precipitated in a relatively narrow range around pH 7. In weakly acid media due to hydrolysis at the working anode, the solubility increases considerably and the anode remains active, particularly in flowing and salt-rich media. [Pg.187]

Carboxypeptidases are zinc-containing enzymes that catalyze the hydrolysis of polypeptides at the C-terminal peptide bond. The bovine enzyme form A is a monomeric protein comprising 307 amino acid residues. The structure was determined in the laboratory of William Lipscomb, Harvard University, in 1970 and later refined to 1.5 A resolution. Biochemical and x-ray studies have shown that the zinc atom is essential for catalysis by binding to the carbonyl oxygen of the substrate. This binding weakens the C =0 bond by... [Pg.60]

Meroquinenine, CgHjjOaN (meroquinene), formed by the oxidation of all four alkaloids and of cinchoninone or quininone and by the hydrolysis of quinenine or cinchenine (p. 489), crystallises from methyl alcohol in needles, m.p. 223-4° (dee.), [ajp -f- 27-5° (H2O). It gives a nitrosoamine, m.p. 67°, and a monoacetyl derivative, m.p. 110°, and can be esterified the ethyl ester hydrochloride has m.p. 165°. When oxidised by chromic acid it yields formic and cincboloiponic acids. On reduction with zinc dust and hydriodic acid, it adds on two atoms of hydrogen forming cincholoipon, CgH jOaN, and when heated with hydrochloric acid at 250-60° gives 3-ethyl-4-methylpyridine ()3-collidine). [Pg.438]

Apparently the role of methanol is to intercept unstable species which otherwise tend to polymerize or rearrange. The methoxy peroxide (72) can be isolated in crystalline form if desired, but it is preferable to treat the methylene dichloride solution at 0° with zinc dust and acetic acid until the mixture shows a negative potassium iodide test. The resulting crude seco-aldehyde (73) is then cyclized to (74) by stirring with neutral alumina in benzene at room temperature for 3 hr. ° Wechter has recently reported a number of transformations of a 5yS-hydroxy-6yS-formyl-B-norpregnane prepared in 8% yield by photolysis and hydrolysis of a 5a-hydroxy-6 -azidopregnane. [Pg.432]


See other pages where Zinc hydrolysis is mentioned: [Pg.79]    [Pg.504]    [Pg.79]    [Pg.504]    [Pg.259]    [Pg.312]    [Pg.259]    [Pg.259]    [Pg.163]    [Pg.169]    [Pg.849]    [Pg.260]    [Pg.210]    [Pg.285]    [Pg.517]    [Pg.241]    [Pg.433]    [Pg.295]    [Pg.349]    [Pg.76]    [Pg.97]    [Pg.104]    [Pg.371]    [Pg.179]    [Pg.9]    [Pg.75]    [Pg.148]    [Pg.231]    [Pg.530]    [Pg.699]    [Pg.316]    [Pg.690]   
See also in sourсe #XX -- [ Pg.405 , Pg.417 ]




SEARCH



Amide hydrolysis zinc-mediated

Hydrolysis zinc catalyst

Zinc catalysis hydrolysis

Zinc complexes catalytic hydrolysis studies

© 2024 chempedia.info