Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite supported metals pore size effect

This study was initiated in an attempt to produce highly-dispersed, thermally-stable, zeolite-supported metal catalysts and to investigate the effect of acidity and pore size of the zeolite on the products obtained from synthesis gas conversion. As a result of this study, several conclusions can be made. [Pg.407]

It is quite challenging to rmderstand in what way the zeolite influences the metal compared to other supports. The electronic changes that could be induced by the pore system are quite subtle and metal particle size effects may overrule these changes [200]. hi comparison to metal-support interactions on macroporous oxides, the interaction between metal particles and the supporting zeolite matrix seems more pronounced. This may be because the metal particles interact with the zeolite lattice over a substantial fraction of their surfece. It has also been suggested that in addition to the intrinsic electronic effects due to the small size of the metal particles in the zeolite cage, a modification of the electronic structure of the metal by the acidic zeolite framework has to be considered [201,202]. [Pg.391]

The efficiency and selectivity of a supported metal catalyst is closely related to the dispersion and particle size of the metal component and to the nature of the interaction between the metal and the support. For a particular metal, catalytic activity may be varied by changing the metal dispersion and the support thus, the method of synthesis and any pre-treatment of the catalyst is important in the overall process of catalyst evaluation. Supported metal catalysts have traditionally been prepared by impregnation techniques that involve treatment of a support with an aqueous solution of a metal salt followed by calcination (4). In the Fe/ZSM-5 system, the decomposition of the iron nitrate during calcination produces a-Fe2(>3 of relatively large crystallite size (>100 X). This study was initiated in an attempt to produce highly-dispersed, thermally stable supported metal catalysts that are effective for synthesis gas conversion. The carbonyl Fe3(CO) was used as the source of iron the supports used were the acidic zeolites ZSM-5 and mordenite and the non-acidic, larger pore zeolite, 13X. [Pg.398]

A preparation of designed catalyst is one of the interest subjects to understand the catalysis. Efforts have been paid for the development of unique preparation method[1] those are metal cluster catalysts derived from metal carbonyls, tailored metal catalysts through organometallic processor and ultra-fine metal particle catalysts prepared by metal alkoxides, etc. These preparation methods are mainly concentrated to design the active sites on support surfaces. However, the property of support itself is also a dominant factor in order to conduct smoothly the catalytic reaction. It is known that some supports are valuable for the improvement of selectivity. For example, zeolites are often used as catalysts and supports for their regular pore structures which act effectively for the shape selective reaction[2]. In order to understand the property of support, the following factors can be pointed out besides the pore structure structure, shape, surface area, pore size, acidity, defect, etc. Since these are strongly correlated to the preparation procedure, lots of preparation techniques, therefore, have been proposed, too. Studies have been still continued to discover the preparation method of novel materials as well as zeolites[3]. [Pg.319]

The induction of steric effects by the pore walls was first demonstrated with heterogeneous catalysts, prepared from metal carbonyl clusters such as Rh6(CO)16, Ru3(CO)12, or Ir4(CO)12, which were synthesized in situ after a cation exchange process under CO in the large pores of zeolites such as HY, NaY, or 13X.25,26 The zeolite-entrapped carbonyl clusters are stable towards oxidation-reduction cycles this is in sharp contrast to the behavior of the same clusters supported on non-porous inorganic oxides. At high temperatures these metal carbonyl clusters aggregate to small metal particles, whose size is restricted by the dimensions of the zeolitic framework. Moreover, for a number of reactions, the size of the pores controls the size of the products formed thus a higher selectivity to the lower hydrocarbons has been reported for the Fischer Tropsch reaction. [Pg.448]

EXAFS is also well suited for the study of finely divided metal (or metal oxide or metal sulfide) clusters supported within the pore structure (see Chapter 6). These particles are readily observed by X-ray spectroscopy, even if they are disordered throughout the solid. Analysis can even determine the average particle size of such clusters, which is of vital importance in catalytic preparation. Typically, for example, platinum supported on zeolites (and other solid acids) is a highly effective catalyst in the reforming of hydrocarbons. [Pg.136]


See other pages where Zeolite supported metals pore size effect is mentioned: [Pg.58]    [Pg.54]    [Pg.24]    [Pg.561]    [Pg.455]    [Pg.13]    [Pg.61]    [Pg.77]    [Pg.317]    [Pg.503]    [Pg.7]    [Pg.478]    [Pg.96]    [Pg.115]    [Pg.9]    [Pg.439]    [Pg.76]    [Pg.570]    [Pg.114]    [Pg.145]    [Pg.51]    [Pg.16]    [Pg.220]    [Pg.238]    [Pg.306]    [Pg.26]    [Pg.68]    [Pg.130]   
See also in sourсe #XX -- [ Pg.298 , Pg.299 ]




SEARCH



Effective pore size

Metal support effects

Pore effective

Pore size

Pore-size effect

Support effects

Support zeolites

Supported metals support effect

Zeolite pores

Zeolites metals

© 2024 chempedia.info