Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite potential

Nowadays synthesis of mesoporous materials with zeolite character has been suggested to overcome the problems of week catalytic activity and poor hydrothermal stability of highly silicious materials. So different approaches for the synthesis of this new generation of bimodal porous materials have been described in the literature like dealumination [4] or desilication [5], use of various carbon forms as templates like carbon black, carbon aerosols, mesoporous carbon or carbon replicas [6] have been applied. These mesoporous zeolites potentially improve the efficiency of zeolitic catalysis via increase in external surface area, accessibility of large molecules due to the mesoporosity and hydrothermal stability due to zeolitic crystalline walls. During past few years various research groups emphasized the importance of the synthesis of siliceous materials with micro- and mesoporosity [7-9]. Microwave synthesis had... [Pg.433]

CHARACTERIZATION AND ETHYLENE ADSORPTION PROPERTIES OF SILVER-LOADED FER ZEOLITE POTENTIALLY USED AS TRAP MATERIAL OF COLD-START HYDROCARBON EMISSION FROM VEHICLES... [Pg.162]

Composites containing different types of guests (metal or alloy particles, oxides, sulfides, complexes, polymers) in the cavities of zeolite hosts are prepared for various appHcations in materials research and catalysis. Except for quality assessment by detection of extra-zeolite material after synthesis or thermal treatments, photoemission plays a largely auxiliary role in this area, cooperating with bulk techniques such as X-ray absorption, UV-Vis, IR of probe molecules, and temperature-programmed reduction. The attention drawn to the significance of intra-zeolite potentials by XPS studies [12] has, however, contributed to the elaboration of a new theory of metal-support interactions [18,19]. [Pg.506]

From an electroanalytical point of view, zeolites potentially offer a variety of properties required to an electrode coating (1) shape, size, and charge selectivity, capable of discriminating the target analyte among different species in solution ... [Pg.203]

In order to synthesize zeolites from fly ash by its activation with NaOH, attempts have been made to identify a suitable fly ash out of its two disposal sites (viz., dry site at the electrostatic precipitator and wet site at the lagoons in the thermal power plants) for conventional (i.e., one step) hydrothermal activation technique [1-10]. Subsequently, the fly ash ascertained to exhibit improved zeolitization potential has been prefered to undergo novel hydrothermal treatment processes (viz., three step activation by hydrothermal technique and three step fusions) to activate the fly ash significantly for synthesis of fly ash zeolites with high cation exchange cqjadfy [11-15]. The details of both the types of alkali activations (viz., conventional with the two ashes and three step activations with the superior ash) are presented in the following. [Pg.64]

Ti, B, Ni, Cr, Fe, Co, Mn) has been described, as was the synthesis of nonsiliceous materials such as oxides of W, Fe, Pb, Mo, and Sb [18]. Although these materials do not represent tme zeolites, they are highly interesting materials which are commonly covered in the zeolite literature with great potential for shape-selective catalysis of bulky molecules. [Pg.2782]

The lower pressure sub-region is characterized by a considerable enhancement of the interaction potential (Chapter 1) and therefore of the enthalpy of adsorption consequently the pore becomes completely full at very low relative pressure (sometimes 0 01 or less), so that the isotherm rises steeply from the origin. This behaviour is observed with molecular sieve zeolites, the enhancement of the adsorption energy and the steepness of the isotherm being dependent on the nature of the adsorbent-adsorbate interaction and the polarizability of the adsorbate. -... [Pg.242]

Unit Cell Size (UCS). The UCS is a measure of aluminum sites or the total potential acidity per unit cell. The negatively-charged aluminum atoms are sources of active sites in the zeolite. Silicon atoms do not... [Pg.88]

Zeolite softeners were limited in application because of their potential for rapid fouling by ferric hydroxide or calcium carbonate, and a narrow operating pH range of 5.8 to 8.3 was therefore preferred to minimize this problem. [Pg.391]

Shape-selective zeolites can also be used to discriminate among potential products of a chemical reaction, a property called product shape selectivity. In this case, the product produced is the one capable of escaping from the zeolite pore structure. This is the basis of the selective conversion of methanol to gasoline over... [Pg.171]

Zeolite chemistry is an excellent example of how a three-dimensional surface can alter the course of chemical reactions, selecting for one product out of a host of potential candidates. In addition to the many commercial applications that they have found, shape-selective zeolites have provided the basis for a rich new area of catalytic science and technology, one expected to spawn yet more materials, knowledge, and applications. [Pg.172]

As shown in Table 2.1, the improved catalytic performance of alkaline-treated zeolites compared to the parent purely microporous counterparts has been demonstrated decidedly by different groups active in academia and in industry. The positive effect is reflected in the enhanced activity, selectivity, and/or lifetime (coking resistance) of the hierarchical systems. The examples listed embrace not only a variety of zeohte topologies (MFl, MOR, MTW, BEA, and AST) but also reactions involving hghter hydrocarbons as well as bulky molecules. This illustrates the potential of the desihcation treatment, although more work is to be done in optimizing the catalytic system for the wide variety of applications. [Pg.46]

Most of the microporous and mesoporous compounds require the use of structure-directing molecules under hydro(solvo)thermal conditions [14, 15, 171, 172]. A serious handicap is the application of high-temperature calcination to develop their porosity. It usually results in inferior textural and acidic properties, and even full structural collapse occurs in the case of open frameworks, (proto) zeolites containing small-crystalline domains, and mesostructures. These materials can show very interesting properties if their structure could be fully maintained. A principal question is, is there any alternative to calcination. There is a manifested interest to find alternatives to calcination to show the potential of new structures. [Pg.132]

MicrocrystalUne zeolites such as beta zeolite suffer from calcination. The crystallinity is decreased and the framework can be notably dealuminated by the steam generated [175]. Potential Br0nsted catalytic sites are lost and heteroatoms migrate to extra-framework positions, leading to a decrease in catalytic performance. Nanocrystals and ultrafine zeolite particles display aggregation issues, difficulties in regeneration, and low thermal and hydrothermal stabilities. Therefore, calcination is sometimes not the optimal protocol to activate such systems. Application of zeolites for coatings, patterned thin-films, and membranes usually is associated with defects and cracks upon template removal. [Pg.132]


See other pages where Zeolite potential is mentioned: [Pg.218]    [Pg.170]    [Pg.342]    [Pg.8]    [Pg.265]    [Pg.544]    [Pg.152]    [Pg.336]    [Pg.265]    [Pg.48]    [Pg.218]    [Pg.170]    [Pg.342]    [Pg.8]    [Pg.265]    [Pg.544]    [Pg.152]    [Pg.336]    [Pg.265]    [Pg.48]    [Pg.734]    [Pg.2789]    [Pg.254]    [Pg.255]    [Pg.255]    [Pg.465]    [Pg.465]    [Pg.255]    [Pg.140]    [Pg.347]    [Pg.23]    [Pg.89]    [Pg.834]    [Pg.306]    [Pg.3]    [Pg.170]    [Pg.148]    [Pg.37]    [Pg.46]    [Pg.48]    [Pg.73]    [Pg.89]    [Pg.89]   


SEARCH



© 2024 chempedia.info