Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ylides aromatic compounds

Non-Benzenoid Aromatic Compounds.—The synthesis of aromatic molecules containing small, medium, and large rings, using the reaction of dicarbonyl compounds and bis-ylides, has been thoroughly reviewed.95... [Pg.198]

The following types of dipolarophiles have been used successfully to synthesize five-membered heterocycles containing three heteroatoms by [3 + 2]-cycloaddition of thiocarbonyl ylides azo compounds, nitroso compounds, sulfur dioxide, and Al-sulfiny-lamines. As was reported by Huisgen and co-workers (91), azodicarboxylates were noted to be superior dipolarophiles in reactions with thiocarbonyl ylides. Differently substituted l,3,4-thiadiazolidine-3,4-dicarboxylates of type 132 have been prepared using aromatic and aliphatic thioketone (5)-methylides (172). Bicyclic products (133) were also obtained using A-phenyl l,2,4-triazoline-3,5-dione (173,174). [Pg.344]

The purpose of present review is to summarize the application of different classes of iodine(III) compounds in carbon-carbon bond forming reactions. The first two sections of the review (Sects. 2 and 3) discuss the oxidative transformations induced by [bis(acyloxy)iodo] arenes, while Sects. 4 through 9 summarize the reactions of iodonium salts and ylides. A number of previous reviews and books on the chemistry of polyvalent iodine discuss the C-C bond forming reactions [1 -10]. Most notable is the 1990 review by Moriarty and Vaid devoted to carbon-carbon bond formation via hypervalent iodine oxidation [1]. In particular, this review covers earlier literature on cationic carbocyclizations, allyla-tion of aromatic compounds, coupling of /1-dicarbonyl compounds, and some other reactions of hypervalent iodine reagents. In the present review the emphasis is placed on the post 1990s literature. [Pg.100]

Several organofullerene donor-acceptor molecular material hybrid systems have been synthesized via 1,3-dipolar cycloaddition reactions of azomethine ylides, via Bingel cyclopropanation and methanofullerene formation intermediates as well as via cycloaddition reactions, that have already been discussed in previous sections. The majority of such hybrid systems possess always as acceptor unit the fullerene core and as donor moieties porphyrins, tetrathiafulvalenes, ferrocenes, quinones, or electron-rich aromatic compounds that absorb visible light [190-193]. The most active research topic in this particularly technological field relies (i) on the arrangement of several redox-active building blocks in... [Pg.17]

Synthesis of trifluoromethylated compounds 152 has been achieved via ester-enolate [2,3]-Wittig and [3,3]-lreland-Claisen rearrangements. Perfluorocyclo-butane phosphonium ylides, e.g. 153, have been used as a masked fluoride anion source in their reactions with alcohols and carboxylic acids which lead to alkyl-and acyl-fluorides. Ylides 153 are also reported to cleave Si-C and Si-O bonds, cause dimerisation of fluoro-olefins, and also react with acid chlorides or other activated aromatic compounds under halogen exchange. ... [Pg.262]

Similar to carbonyl ylides, azomethine ylides are normally generated as transient species in situ, and a number of protocols have been established so far [22]. Among them, the transition-metal-mediated procedures have enj oyed great privileges in terms of milder reaction conditions, better selectivities, and broad functional group tolerance. This part focuses on the recent development of transition-metal-mediated in situ generation of (metal-containing) azomethine ylides as well as their applications for the synthesis of aromatic compounds. [Pg.407]

Cycloaddition of 2-nitrosopyridine 48 with nitrile oxides can give either di-A -oxides such as 49 or 3-mono-A -oxides such as 50 (93JHC287). In general, greater electron withdrawing character in the aromatic substituent appears to favor formation of the di-A -oxides. Sulfur ylides such as compound 51 are obtained from aryl isothiocyanates and l-amino-2-methylthiopyridinium iodides (84JCS(P1)1891) nitrogen ylides can be obtained from a similar reaction (86H(24)3363). [Pg.9]

The sulfur ylide-mediated epoxidation of aldehydes has been thoroughly investigated [70, 71]. The chiral sulfur ylides reported by Aggarwal have been most broadly applicable, and a catalytic, asymmetric process yielding aromatic transepoxides has been developed [72]. In this process, the sulfur ylides are produced in situ from diazo compounds, generated in turn from tosylhydrazone salts (Scheme 9.15) [73],... [Pg.326]

It is interesting to notice that the complex 58 is also able to react with soft donor hgands such as triphenylphosphine resulting in the formation in very mild conditions of the unexpected orthometallated complex 59 (Scheme 23) [89,91, 92]. The ligand here is linked to the metal through both an aromatic and an ylidic carbon. Other transformations are realized from 58 leading, including the compounds of the previous scheme, to four different structures for the bis-ylide (i) C,C-chelate (ii) C,C-orthometallated (iii) C,C-orthometallated and free ylide (iv) C,C,C-terdentate (Scheme 23). [Pg.58]

Phosphorus ylides C-substituted and stabifized by elements of group 16 are often used for the synthesis of natural substances. For example, the synthesis of simpHfied analogs of artemisinin, used against chloroquine-resistant malaria, has been recently described from methoxymethylphosphonium yhde 120 [127,128]. The later is able to convert afiphatic nitriles into a-functionafized ketones 122 which are the precursors of the target compounds. Starting from the aromatic ni-... [Pg.67]

The 3-oxo-2-pyrazolidinium ylides 315, easily available by reaction of the corresponding pyrazolidin-3-one with aromatic aldehydes, function as 1,3-dipoles in cycloaddition reactions with suitable alkenes and alkynes to provide the corresponding products. When unsymmetrical alkynes are used, mixtures of both possible products 316 and 317 are usually obtained (Equation 45). The regioselectivity of cycloadditions of the reaction with methyl propiolate is influenced by the substituents on the aryl residue using several 2,6-di- and 2,4,6-trisubstituted phenyl derivatives only compound 316 is formed <2001HCA146>. Analogous reactions of 3-thioxo-l,2-pyrazolidinium ylides have also been described <1994H(38)2171>. [Pg.413]

Compounds of the general formula 69 are prepared by cycloaddition of N-methyl- or A(-arylmaleimides with arylidene imines of AAs and in the presence of an aromatic aldehyde. Stabilized azomethine ylides are formed as intermediates, which then afford the cycloadducts. Several isomers are formed, and the influence of various metal salts and solvents was investigated (87BCJ4067 88T557). Similar transformations have been performed with A-ailyl glycine esters (91TL1359). [Pg.41]


See other pages where Ylides aromatic compounds is mentioned: [Pg.151]    [Pg.641]    [Pg.261]    [Pg.123]    [Pg.541]    [Pg.491]    [Pg.194]    [Pg.58]    [Pg.41]    [Pg.55]    [Pg.260]    [Pg.128]    [Pg.182]    [Pg.410]    [Pg.988]    [Pg.414]    [Pg.433]    [Pg.412]    [Pg.188]    [Pg.187]    [Pg.31]    [Pg.1032]    [Pg.426]    [Pg.637]    [Pg.646]    [Pg.653]    [Pg.295]    [Pg.625]    [Pg.240]    [Pg.240]   
See also in sourсe #XX -- [ Pg.666 ]




SEARCH



Ylides compounds

© 2024 chempedia.info