Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yield side reactions effect

Polycondensations are reversible reactions and can have cyclization and other side reactions [11]. Differences in reaction yields between the three catalysts studied may due to Lewis acid strength. Iron(ni) chloride is a milder Lewis acid than aluminum chloride and tin(II) chloride is even milder. The difference in reactivity of the three catalysts can be seen well at 175 °C where iron(III) chloride and tin(II) chloride have about equal yields and aluminum chloride has a lower yield. Side reactions with aluminum chloride are expected to have a greater effect on the yields as compared to the other two catalysts and should increase with increasing reaction temperature. Indeed this is evidenced in our reactions by reduced yields fi om... [Pg.2652]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

The i j -configuration of the 6,7-double bond in pre-vitamin D is critical to its subsequent thermal rearrangement to the active vitamin. A photochemical isomerization of pre-vitamin D to yield the inactive trans-isoTnen occurs under conditions of synthesis, and is especially detrimental if there is a significant short wavelength component, eg, 254 nm, to the radiation continuum used to effect the synthesis. This side reaction reduces overall yield of the process and limits conversion yields to ca 60% (71). Photochemical reconversion of the inactive side product, tachysterol, to pre-vitamin D allows recovery of the product which would otherwise be lost, and improves economics of the overall process (70). [Pg.392]

Introduction of an additional methyl group on the donor atom of TMM moiety gives a low 33% yield of the perhydroindans (49, X=H2) and (50, X=H2) with substantial production of the diene by-products [24]. However, it is still remarkable that the reaction works at all since the corresponding intermolecular cycloaddition failed. Incorporation of a carbonyl moiety adjacent to the donor carbon atom doubles the yield of the cycloadducts to 66% (Scheme 2.15). This so-called acyl effect works by making the donor carbon of the TMM unit "softer," thus facilitating the initial step of the conjugate addition, as well as inhibiting base-induced side reactions [22]. [Pg.67]

Thus, various kmds of bases are effective in inducing the Henry reaction The choice of base and solvent is not crucial to carry out the Henry reaction of simple nitroalkanes v/ith aldehydes, as summarized in Table 3 1 In general, sterically hindered carbonyl or nitro compounds are less reactive not to give the desired ni tro-aldol products in good yield In such cases, self-condensation of the carbonyl compound is a serious side-reaction Several mochfied procedures for the Henry reaction have been developed... [Pg.32]

A special technique was necessary to obtain good yields of ethyl pyrrole-3-acetate from ethyl pyrrole-3-glyoxalate. Reduction over W-7 Raney Ni in 50% aq ethanol was accompanied by major ring reduction and tarring. By use of a two-phase system, toluene and 50% aq ethanol, these side reactions could be curtailed. Apparently the desired product was removed effectively from the aqueous layer into the toluene as soon as it was formed (26). [Pg.70]

Some workers avoid delay. Pai)adium-on-carbon was used effectively for the reductive amination of ethyl 2-oxo-4-phenyl butanoate with L-alanyl-L-proline in a synthesis of the antihyperlensive, enalapril maleate. SchifTs base formation and reduction were carried out in a single step as Schiff bases of a-amino acids and esters are known to be susceptible to racemization. To a solution of 4,54 g ethyl 2-oxO 4-phenylbutanoate and 1.86 g L-alanyl-L-proline was added 16 g 4A molecular sieve and 1.0 g 10% Pd-on-C The mixture was hydrogenated for 15 hr at room temperature and 40 psig H2. Excess a-keto ester was required as reduction to the a-hydroxy ester was a serious side reaction. The yield was 77% with a diastereomeric ratio of 62 38 (SSS RSS)((55). [Pg.85]

In working Example 18.8, we have in effect assumed that the electrolyses were 100% efficient in converting electrical energy into chemical energy. In practice, this is almost never the case. Some electrical energy is wasted in side reactions at the electrodes and in the form of heat This means that the actual yield of products is less than the theoretical yield. [Pg.497]

The same azide 67 was utiUzed to study the microwave-assisted synthesis of triazoles using the thermal cycloaddition with acetylenes. To achieve high yields in a short time and avoiding side reactions, the authors analyzed the effects of time, temperature, and concentration (in toluene) on the synthesis of triazoles [55]. [Pg.227]

The most comprehensive examination of the Rokita kinetic procedure from a synthetic standpoint was carried out by Barrero and coworkers.6 They examined the effects of various leaving groups, solvents, nucleophiles, and their equivalents on subsequent [4 + 2] cycloadditions. Avast excess of the intended nucleophile (50-100 equiv) must be employed, because the fluoride triggered (3-elimination proves nearly instantaneous at room temperature resulting in a high concentration of a species that is prone to undergo dimerization and other undesired side reactions that are irreversible at these low temperatures (Fig. 4.7). Use of fewer equivalents of the intended nucleophile led to a rapid drop off in yield. For example, 5-10 equivalents of ethoxy vinyl ether (EVE) affords only a 5-10% yield of the desired benzopyran... [Pg.93]

The major side reaction to the desired acylation product is hydrolysis of the anhydride. In aqueous solutions anhydrides may break down by the addition of one molecule of water to yield two carboxylate groups. The presence of an excess of the anhydride in the reaction medium usually is enough to minimize the effects of competing hydrolysis. [Pg.103]

In addition, the fulvestrant could be glycosylated effectively at its 17-OH position with pivaloylated glycosyl trichloroacetimidates, which suppressed the competing transacylation side reaction and led to improved yields of the desired glycosides (Scheme 3.48d) [503]. In this synthesis, the inverse procedure (i.e. addition of a trichloroacetimidate donor to a mixture of an acceptor and a promoter) was found to be superior for glycosylations. Very recently, a stepwise synthesis of branched... [Pg.185]

Some of these problems can be overcome with a different calorimetric design (see later discussion). Other problems, which are more dependent on the chemistry and physics of the process under study than on the instrumentation, require careful attention. Unnoticed side reactions or secondary photolysis are examples, but one of the most serious error sources in photocalorimetry is caused by the quantum yield values, particularly, as explained, when they are small. Unfortunately, many literature quantum yields are unreliable, and it is a good practice to determine n for each photocalorimetric run. Errors in

inner filter effects, that is, photon absorption by reaction products. [Pg.151]


See other pages where Yield side reactions effect is mentioned: [Pg.45]    [Pg.383]    [Pg.364]    [Pg.67]    [Pg.123]    [Pg.332]    [Pg.395]    [Pg.534]    [Pg.254]    [Pg.51]    [Pg.457]    [Pg.1003]    [Pg.144]    [Pg.32]    [Pg.748]    [Pg.34]    [Pg.169]    [Pg.101]    [Pg.156]    [Pg.259]    [Pg.118]    [Pg.31]    [Pg.308]    [Pg.86]    [Pg.325]    [Pg.147]    [Pg.485]    [Pg.172]    [Pg.607]    [Pg.55]    [Pg.633]    [Pg.44]    [Pg.238]   
See also in sourсe #XX -- [ Pg.93 , Pg.93 ]

See also in sourсe #XX -- [ Pg.93 , Pg.93 ]




SEARCH



Reaction yield

Yield effective

© 2024 chempedia.info