Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water Weak bases, 500 reaction with

Cation derived from a weak base Reaction with water only the cation Solution acidic Examples NH4CI, NH4NO3, NH4CIO4 Reaction with water both ions Solution neutral if ka = kb, acidic if ka> kb, basic if kb > ka Examples NH4CN (basic), (NH4)2S (basic), NH4NO2 (acidic)... [Pg.422]

Equilibrium constants of weak bases can be measured in the laboratory by procedures very much like those used for weak acids. In practice, though, it is simpler to take advantage of a simple mathematical relationship between Kb for a weak base and Ka for its conjugate acid. This relationship can be derived by adding together the equations for the ionization of the weak acid HB and the reaction of the weak base B- with water ... [Pg.370]

Similarly, the net ionic equation for the reaction of the weak base ammonia with the strong acid HC1 in water is... [Pg.100]

Hydrated oxides with clearly exhibited basic and acidic properties are well soluble in water. They are prepared by the interaction of the corresponding oxides or metals with water. Weak bases, ampholytes and weak acids are practically insoluble or poorly soluble. Exchange reactions between the solutions of the corresponding salts and strong bases are used to synthesize them. [Pg.30]

Strong bases are all composed of a cation and hydroxide ion. They are strong electrolytes. Weak bases react with water to make hydroxide ion, accepting a proton from water leaving free hydroxide ion in solution. They are weak electrolytes and exist in solution as an equilibrium between the molecular base and the ions it forms upon reaction with water. [Pg.408]

SECTION 16.7 Weak bases include NH3, amines, and the anions of weak acids. The extent to which a weak base reacts with water to generate the corresponding conjugate acid and OH is measured by the base-dissociation constant, Ki,. This is the equilibrium constant for the reaction B(aq) + HjOU) HB (aq) + OH" (aq), where B is the hase. [Pg.693]

Fluridone is a weak base with low water solubiUty. Sorption of fluridone increases with decreasing pH (436). Leaching of fluridone was not significant in field study, and the persistence has been determined to be less than 365 days. The degradation of fluridone appears to be microbial in nature, and accelerated breakdown of the herbicide occurs upon repeated appHcations (437). Fluorochloridone is shown to degrade by hydrolysis at pH 7 and 9, but not at lower pH. The half-Hves for this reaction are 190 and 140 days for pH 7 and 9, respectively. Breakdown by photolysis occurs rapidly with a half-hfe of 4.3 days at pH 7 (438). An HA is available for acifluorfen. [Pg.54]

A base is any material that produces hydroxide ions when it is dissolved in water. The words alkaline, basic, and caustic are often used synonymously. Common bases include sodium hydroxide (lye), potassium hydroxide (potash lye), and calcium hydroxide (slaked lime). The concepts of strong versus weak bases, and concentrated versus dilute bases are exactly analogous to those for acids. Strong bases such as sodium hydroxide dissociate completely while weak bases such as the amines dissociate only partially. As with acids, bases can be either inorganic or organic. Typical reactions of bases include neutralization of acids, reaction with metals, and reaction with salts ... [Pg.165]

Inorganic Chlorides/Halides — These metallic salts are formed from the reaction of a weak base with the strong acid HCl. Salts such as these dissolve in water to produce a markedly acidic solution. This is exemplified by aluminum chloride, which is corrosive due to the acidity resulting from the hydrolysis that produces aluminum and chlorine ions. Anhydrous AICI3 hydrolyzes violently when contacted by water. [Pg.175]

Alcohols can act either as weak acids or as weak bases, just as water can. Show the reaction of methanol, CH jOH, with a strong acid such as f-ICl and with a strong base such as Na -N112. [Pg.69]

When an acidic water solution is mixed with a basic water solution, an acid-base reaction takes place. The nature of the reaction and hence the equation written for it depend on whether the add and base involved are strong or weak. [Pg.82]

Molecules. As pointed out in Chapter 4, there are many molecular weak bases, including the organic compounds known as amines. The simplest weak base is ammonia, whose reversible Bronsted-Lowry reaction with water is represented by the equation... [Pg.368]

Anions. An anion derived from a weak add is itself a weak base. A typical example is the fluoride ion, F-, which is the conjugate base of the weak acid HF. The reaction of the F- ion with water is... [Pg.368]

Notice that this reaction is the reverse of the reaction of the weak base QH - (the acetate ion) with water (Chapter 13). It follows from the reciprocal rule that for this reaction,... [Pg.396]

Neutralisation reactions, or addimetry and alkalimetry. These include the titration of free bases, or those formed from salts of weak acids by hydrolysis, with a standard acid (addimetry), and the titration of free acids, or those formed by the hydrolysis of salts of weak bases, with a standard base (alkalimetry). The reactions involve the combination of hydrogen and hydroxide ions to form water. [Pg.258]

When we write the net ionic equation for the neutralization of a weak acid or a weak base, we use the molecular form of the weak acid or base, because molecules are the dominant species in solution. For example, we write the net ionic equation for the reaction of the weak acid HCN with the strong base NaOH in water (Fig. J.3) as... [Pg.100]

J.ll In each of the following salts, either the cation or the anion is a weak acid or a weak base. Write the chemical equation for the proton transfer reaction of this cation or anion with water (a) NaC6H50 (b) KCIO (c) C,HSNHCI ... [Pg.101]

J.I3 Na As04 is a salt of a weak base that can accept more than one proton, (a) Write the chemical equations for the sequential proton transfer reactions of the anion with water. Identify the acid and the base in each reaction, (b) If 35.0 g of Na3As04 is dissolved in water to make 250.0 ml. of solution, how many moles of sodium cations are in the solution ... [Pg.101]

To determine whether the solution of a salt will be acidic, basic, or neutral, we must consider both the cation and the anion. First we examine the anion to see whether it is the conjugate base of a weak acid. If the anion is neither acidic nor basic, we examine the cation to see whether it is an acidic metal ion or the conjugate acid of a weak base. If one ion is an acid and the other a base, as in NH4F, then the pH is affected by the reactions of both ions with water and both equilibria must be considered, as in Section 10.19. [Pg.541]

Using Environmental Examples to Teach About Acids. Acid-base reactions are usually presented to secondary students as examples of aqueous equilibrium (2). In their study of acids and bases, students are expected to master the characteristic properties and reactions. They are taught to test the acidity of solutions, identify familiar acids and label them as strong or weak. The ionic dissociation of water, the pH scale and some common reactions of acids are also included in high school chemistry. All of these topics may be illustrated with examples related to acid deposition (5). A lesson plan is presented in Table I. [Pg.468]

The addition of dry HCl to a mixture of a nitrile and an alcohol in the absence of water leads to the hydrochloride salt of an imino ester (imino esters are also called imidates and imino ethers). This reaction is called the Pinner synthesisThe salt can be converted to the free imino ester by treatment with a weak base such as sodium bicarbonate, or it can be hydrolyzed with water and an acid catalyst to the corresponding carboxylic ester. If the latter is desired, water may be present from the beginning, in which case aqueous HCl can be used and the need for gaseous HCl is eliminated. Imino esters can also be prepared from nitriles with basic catalysts. ... [Pg.1183]

C06-0067. When 10.00 mL of a solution of a strong acid is mixed with 100.0 mL of a solution of a weak base in a coffee-cup calorimeter, the temperature falls from 24.6 °C to 22.7 °C. Determine q for the acid -base reaction, assuming that the liquids have densities of 1.00 g/mL and the same heat capacity as pure water. [Pg.423]

After completing our analysis of the effects of the dominant equilibrium, we may need to consider the effects of other equilibria. The calculation of [H3 O ] in a solution of weak base illustrates circumstances where this secondary consideration is necessary. Here, the dominant equilibrium does not include the species, H3 O, whose concentration we wish to know. In such cases, we must turn to an equilibrium expression that has the species of interest as a product. The reactants should be species that are involved in the dominant equilibrium, because the concentrations of these species are determined by the dominant equilibrium. We can use these concentrations as the initial concentrations for our calculations based on secondary equilibria. Look again at Example for another application of this idea. In that example, the dominant equilibrium is the reaction between hypochlorite anions and water molecules H2 0 l) + OCr(c2 q) HOCl((2 q) + OH ((2 q) Working with this equilibrium, we can determine the concentrations of OCl, HOCl, and OH. To find the concentration of hydronium ions, however, we must invoke a second equilibrium, the water equilibrium 2 H2 0(/) H3 O (a q) + OH (a q)... [Pg.1252]

Any anion of a weak acid, including the anions of polyprotic acids, is a weak base. The acid-base properties of monoanions of polyprotic acids are complicated, however, because the monoanion is simultaneously the conjugate base of the parent acid and an acid in its own right. For example, hydrogen carbonate anions undergo two proton-transfer reactions with water ... [Pg.1258]

Oxygen-containing molecules cannot be tolerated in the ammonia synthesis, primarily because they form iron oxide that blocks the active surface. First the CO2 is removed, through a scrubber, by reaction with a strong base. The remaining CO (and CO2) is then removed by the methanation reaction, converting the CO into methane and water. Finally the water is removed by, for example, molecular sieves. Methane does not present problems because it interacts weakly with the catalyst surface. The gas mixture (Tab. 8.6) is compressed to the roughly 200 bar needed for ammonia synthesis and admitted to the reactor. [Pg.330]


See other pages where Water Weak bases, 500 reaction with is mentioned: [Pg.302]    [Pg.114]    [Pg.224]    [Pg.644]    [Pg.847]    [Pg.169]    [Pg.223]    [Pg.359]    [Pg.704]    [Pg.224]    [Pg.208]    [Pg.319]    [Pg.243]    [Pg.144]    [Pg.384]    [Pg.281]    [Pg.1575]    [Pg.52]    [Pg.82]    [Pg.466]    [Pg.411]    [Pg.517]    [Pg.25]    [Pg.121]    [Pg.177]   


SEARCH



Bases reaction with water

Reaction with base

Reaction with water

Water-based

Water-based reactions

Weak bases

© 2024 chempedia.info