Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water intermolecular interactions

The water-water intermolecular interaction is described by the TIP4P potential. The ethane molecule consists of two interaction sites, each of which interacts with each other via Lennard-Jones (LJ) potential. The reference of ethane molecule is spherical and is of LJ type interaction with size and energy parameters of 4.18 A and 1.72 kj/mol. The LJ parameters for methyl group of ethane are 3.78 A and 0.866 kj/mol. For the water-guest interaction, the Lorentz-Berthelot rule is assumed. The interaction potentials for all pairs of molecules are truncated smoothly at... [Pg.285]

From the standpoint of thermodynamics, the dissolving process is the estabHsh-ment of an equilibrium between the phase of the solute and its saturated aqueous solution. Aqueous solubility is almost exclusively dependent on the intermolecular forces that exist between the solute molecules and the water molecules. The solute-solute, solute-water, and water-water adhesive interactions determine the amount of compound dissolving in water. Additional solute-solute interactions are associated with the lattice energy in the crystalline state. [Pg.495]

Many of the unusual properties of the perfluorinated inert fluids are the result of the extremely low intermolecular interactions. This is manifested in, for example, the very low surface tensions of the perfluorinated materials (on the order of 9-19 mN jm. = dyn/cm) at 25°C which enables these Hquids to wet any surface including polytetrafluoroethene. Their refractive indexes are lower than those of any other organic Hquids, as are theh acoustic velocities. They have isothermal compressibilities almost twice as high as water. Densities range from 1.7 to 1.9 g/cm (l )-... [Pg.297]

Starches. Starch (qv) granules must be cooked before they wiU release their water-soluble molecules. It is common to speak of solutions of polysaccharides, but in general, they do not form tme solutions because of their molecular sizes and intermolecular interactions rather they form molecular dispersions. The general rheological properties of polysaccharides like the starch polysaccharides are described below under the discussion of polysaccharides as water-soluble gums. Starch use permeates the entire economy because it (com starch in particular) is abundantly available and inexpensive. Another key factor to its widespread use is the fact that it occurs in the form of granules. [Pg.484]

PDMS based siloxane polymers wet and spread easily on most surfaces as their surface tensions are less than the critical surface tensions of most substrates. This thermodynamically driven property ensures that surface irregularities and pores are filled with adhesive, giving an interfacial phase that is continuous and without voids. The gas permeability of the silicone will allow any gases trapped at the interface to be displaced. Thus, maximum van der Waals and London dispersion intermolecular interactions are obtained at the silicone-substrate interface. It must be noted that suitable liquids reaching the adhesive-substrate interface would immediately interfere with these intermolecular interactions and displace the adhesive from the surface. For example, a study that involved curing a one-part alkoxy terminated silicone adhesive against a wafer of alumina, has shown that water will theoretically displace the cured silicone from the surface of the wafer if physisorption was the sole interaction between the surfaces [38]. Moreover, all these low energy bonds would be thermally sensitive and reversible. [Pg.689]

Solvation and especially hydration are rather complex phenomena and little is known about them. Depending on the kind of molecular groups, atoms or ions interacting with the solvent, one can differ between lyo- or hydrophilic and lyo-or hydrophobic solvation or hydration. Due to these interactions the so-called liquid structure is changed. Therefore it seems to be unavoidable to consider, at least very briefly, the intermolecular interactions and the main features of liquids, especially water structure before dealing with solvation/hydration and their effects on the formation of ordered structures in the colloidal systems mentioned above. [Pg.2]

The most fundamental thermodynamic approach of Rudakov (6) applies to all condensed systems. The actual linear relationship is argued to exist between enthalpy (AH) and entropy (AS) of intermolecular interaction, as reflected in an approximately linear relationship between the total enthalpy and entropy. Special attention has been given to hydrophobic interaction (89, 90) in water solutions, which makes the isokinetic behavior more pronounced and markedly changes its slope. [Pg.461]

Solubility limits depend on the stabilization generated by solute-solvent interactions balanced against the destabilization that occurs when solvent-solvent interactions are dismpted by solute. Thus, we must examine intermolecular interactions involving water and alcohol molecules. [Pg.837]

At first glance it may seem that like dissolves like does not apply here. Certainly, none of these complex molecules looks like water, and the resemblance to simple hydrocarbons such as cyclohexane also is remote. Keep in mind, however, that the basis for the principle is that similar compounds dissolve in each other because they have common patterns of intermolecular interactions. Example indicates that alcohols containing large nonpolar segments do not dissolve well in water. We can categorize vitamins similarly by the amounts of their stmctures that can be stabilized by hydrogen bonding to water molecules. [Pg.840]

Higher water coverages and the presence of solution both act to lower the barriers to activate water. The intermolecular interactions that result from hydrogen bonding with other water molecules stabilize the activated HO—H complex over the entire dissociation reaction coordinate. For metals with high workfunctions, the aqueous phase can enable heterolytic water activation... [Pg.106]

Hess O, Caffarel M, Huiszoon C, Claverie P (1990) Second-order exchange effects in intermolecular interactions. The water dimer. J Chem Phys 92 6049... [Pg.170]


See other pages where Water intermolecular interactions is mentioned: [Pg.538]    [Pg.48]    [Pg.218]    [Pg.538]    [Pg.48]    [Pg.218]    [Pg.136]    [Pg.141]    [Pg.369]    [Pg.489]    [Pg.273]    [Pg.286]    [Pg.459]    [Pg.348]    [Pg.67]    [Pg.68]    [Pg.396]    [Pg.333]    [Pg.377]    [Pg.268]    [Pg.153]    [Pg.835]    [Pg.149]    [Pg.306]    [Pg.320]    [Pg.336]    [Pg.416]    [Pg.417]    [Pg.501]    [Pg.152]    [Pg.739]    [Pg.750]    [Pg.38]    [Pg.193]    [Pg.274]    [Pg.105]    [Pg.108]    [Pg.111]    [Pg.114]    [Pg.122]    [Pg.88]    [Pg.202]    [Pg.215]   
See also in sourсe #XX -- [ Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.23 , Pg.24 ]




SEARCH



Intermolecular interaction

Intermolecular interactions water dimer

The Effect of Water on Intermolecular Interactions

© 2024 chempedia.info