Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bromine and water

SeaeHon.— Y boiling, bromio acid decomposes into water, bromine, and oxygen —... [Pg.90]

When treated with water, bromine and iodine are set free hydrochloric acid liberates iodine sodium or ammonium hydroxides give a black precipitate of nitrogen iodide, and the mother liquid liberates bromine when treated with hydrochloric acid. Sulphurous acid gives hydrobromic and hydriodic acids. F. Ephraim. found the dissociation press, of NI IB to be 65 mm. at 107° 204 mm. at 134° 465 mm. at 154° and 640 mm. at 161°. [Pg.620]

The standard entropy of a substance in the gas phase is greater than the standard entropy of the same substance in either the liquid or solid phase (examples are water, bromine, and iodinej. [Pg.730]

BrCHi CHjBr. A colourless liquid with a sweet odour, m.p. 10°C, b.p. 132°C. Manufactured by passing ethene through bromine or bromine and water at about 20 C. Chemical properties similar to those of 1,2-dichloroethane when heated with alkali hydroxides, vinyl bromide is formed. Used extensively in petrols to combine with the lead formed by the decomposition of lead tetraethyl, as a fumigant for stored products and as a nematocide. [Pg.134]

To determine which halogen is present, take 1-2 ml. of the filtrate from the sodium fusion, and add dilute sulphuric acid until just acid to litmus. Add about 1 ml. of benzene and then about 1 ml. of chlorine water and shake. A yellowish-brown colour in the benzene indicates bromine, and a violet colour iodine. If neither colour appears, the halogen is chlorine. The result may be confirmed by testing the solubility of the silver halide (free from cyanide) in dilute ammonia solution silver chloride is readily soluble, whereas the bromide dissolves with difficulty, and the iodide not at all. [Pg.325]

Dibromide formation. Dissolve 0 2 ml. of styrene in 0 5 ml. of CCI4 in a test-tube. Add slowly, drop by drop, a 10% solution of bromine in CCI4. Note the decolorisation of the bromine and absence of HBr fumes (therefore reaction by addition and not by substitution). Continue to add the bromine solution until a faint brown colour persists. Scratch the sides of the tube and cool it in ice-water. Filter off the crystals that separate and recrystallise the styrene dibromide from methanol m.p. 72 . [Pg.395]

Procedure for Bromine and Iodine Estimations. Again cover the beaker as before, but before adding the nitric acid add i g. of hydrazine sulphate and heat the solution on the water-bath until evolution of gas ceases. To ensure complete decomposition of an iodate, however, the heating should be continued for i hour. [Pg.507]

Hydrobromic acid. Method 1 (from bromine and sulphur dioxide). A mixture of 600 g. (or 188-6 ml.) of bromine, 250 ml. of water and 760 g. of crushed ice is placed in a 1 6 litre round-bottomed flask and a rapid stream of sulphur dioxide (from a siphon of the liquefied gas) is passed into the flask, care being taken that the outlet of the gas-delivery tube is below the surface of the bromine layer. The rate of flow of the gas is adjusted so that it is completely absorbed. It is advisable to cool the flask in ice and also to shake the contents from time to time. The reduction is complete when the mixture assumes a uniform yellowish-brown or yellow colour, which is unaffected by further introduction of sulphur dioxide excess of the latter gas should be avoided as it will be... [Pg.186]

Note. (1) The reaction between bromine and sulphur in the presence of water may be represent by the equation ... [Pg.187]

Other sources of hazard arise from the handling of such chemicals as concentrated acids, alkalis, metallic sodium and bromine, and in working with such extremely poisonous substances as sodium and potassium cyanides. The special precautions to be observed will be indicated, where necessary, in the experiments in which the substances are employed, and will also be supplied by the demonstrator. The exercise of obvious precautions and cautious handling will in most cases reduce the danger to almost negligible proportions. Thus, if concentrated sulphuric acid should be accidentally spilled, it should be immediately washed with a liberal quantity of water or of a solution of a mild alkali. [Pg.206]

Dibromobutane (from 1 4-butanediol). Use 45 g. of redistilled 1 4-butanediol, 6-84 g. of purified red phosphorus and 80 g. (26 ml.) of bromine. Heat the glycol - phosphorus mixture to 100-150° and add the bromine slowly use the apparatus of Fig. Ill, 37, 1. Continue heating at 100-150° for 1 hour after all the bromine has been introduced. Allow to cool, dilute with water, add 100 ml. of ether, and remove the excess of red phosphorus by filtration. Separate the ethereal solution of the dibromide, wash it successively with 10 per cent, sodium thiosulphate solution and water, then dry over anhydrous potassium carbonate. Remove the ether on a water bath and distil the residue under diminished pressure. Collect the 1 4-dibromobutane at 83-84°/12 mm. the yield 3 73 g. [Pg.283]

An alternative procedure, more suitable for the preparation of somewhat larger quantities of the bromo derivative, is the following. Dissolve 10 g, of the compovmd in 10-15 ml. of glacial acetic acid, cautiously add 3-4 ml. of hquid bromine, and allow the mixture to stand for 15-20 minutes. Pour into 50-100 ml. of water, filter off the bromo compound at the pump, and wash with a httle cold water. Recrystallise from dilute alcohol. [Pg.681]

Start the heat and wait. It will take about 20 minutes to get going and there usually isn t much to see. The flask will be a nice orange colour from the bromine and it won t change much until just before the end. Make sure the water Is running, everything is secure and leave for three hours - have a sleep or something to eat maybe. [Pg.226]

Hvdrobromic acid. Method 1 (from bromine and sulphur dioxide). A mixture of 600g. (or 188.5ml.) of bromine, 250ml. of water and... [Pg.254]

FIGURE 6 13 Mechanism of bromohydrin formation from cyclopentene A bridged bromonium ion is formed and is attacked by a water molecule from the side opposite the carbon-bromine bond The bromine and the hydroxyl group are trans to each other in the product... [Pg.259]

This suggests that as water attacks the bromonium ion positive charge develops on the carbon from which the bromine departs The transition state has some of the character of a carbocation We know that more substituted carbocations are more stable than less substituted ones therefore when the bromonium ion ring opens it does so by breaking the bond between bromine and the more substituted carbon... [Pg.260]

Begin by asking the question What kind of compound is the target molecule and what methods can I use to prepare that kind of compound The desired product has a bromine and a hydroxyl on adjacent carbons it is a vicinal bromohydrin The only method we have learned so far for the preparation of vicinal bromohydrms involves the reaction of alkenes with Bi2 m water Thus a reasonable last step is... [Pg.265]

The spray dried MgCl2 powder is melted ia large reactors and further purified with chlorine and other reactants to remove magnesium oxide, water, bromine [7726-95-6], residual sulfate, and heavy metals (27,28). The molten MgCl2 is then fed to the electrolytic cells which are essentially a modification of the LG. Farben cell. Only a part of the chlorine produced is required for chlorination, leaving up to 1 kg of chlorine per kg of magnesium produced. This by-product chlorine is available for sale. [Pg.318]

Niobium Pentabromide. Niobium pentabromide is most conveniently prepared by reaction of bromine with niobium metal at ca 500°C. It is a fairly volatile yellow-red compound that is hygroscopic and readily hydrolyzes. It is soluble in water, alcohol, and ethyl bromide. [Pg.27]

Dissolved Minerals. The most significant source of minerals for sustainable recovery may be ocean waters which contain nearly all the known elements in some degree of solution. Production of dissolved minerals from seawater is limited to fresh water, magnesium, magnesium compounds (qv), salt, bromine, and heavy water, ie, deuterium oxide. Considerable development of techniques for recovery of copper, gold, and uranium by solution or bacterial methods has been carried out in several countries for appHcation onshore. These methods are expected to be fully transferable to the marine environment (5). The potential for extraction of dissolved materials from naturally enriched sources, such as hydrothermal vents, may be high. [Pg.288]

Phenol quahty tests and analyses can be divided into two categories wet lab and Hquid and gas chromatography. In the wet lab, phenol is tested for pH, sohdification point, solubiUty in water, bromine index, color, and distillation ranges. Phenol concentration, impurities, and CHP contents are analy2ed using highly automated Hquid and gas chromatography. [Pg.290]

Eigure 3 is a flow diagram which gives an example of the commercial practice of the Dynamit Nobel process (73). -Xylene, air, and catalyst are fed continuously to the oxidation reactor where they are joined with recycle methyl -toluate. Typically, the catalyst is a cobalt salt, but cobalt and manganese are also used in combination. Titanium or other expensive metallurgy is not required because bromine and acetic acid are not used. The oxidation reactor is maintained at 140—180°C and 500—800 kPa (5—8 atm). The heat of reaction is removed by vaporization of water and excess -xylene these are condensed, water is separated, and -xylene is returned continuously (72,74). Cooling coils can also be used (70). [Pg.488]

Com and rice starches have been oxidized and subsequently cyanoethylated (97). As molecular size decreases due to degradation during oxidation, the degree of cyanoethylation increases. The derivatized starch shows pseudoplastic flow in water dispersion at higher levels of cyanoethylation the flow is thixotropic. Com and rice starches have been oxidized and subsequently carboxymethylated (98). Such derivatives are superior in the production of textile sizes. Potato starch has been oxidized with neutral aqueous bromine and fully chemically (99) and physically (100) characterized. Amylose is more sensitive to bromine oxidation than amylopectin and oxidation causes a decrease in both gelatinization temperature range and gelatinization enthalpy. [Pg.344]

In kaolin (clay) processing, sulfur dioxide reduces colored impurities, eg, iron compounds. In the bromine industry, sulfur dioxide is used as an antioxidant in spent brine to be reinjected underground. In agriculture, especially in California, sulfur dioxide is used to increase water penetration and the avadabiHty of soil nutrients by virtue of its abiHty to acidulate saline—alkaH soils (327). It is also usefiil for cleaning ferric and manganese oxide deposits from tile drains (328). [Pg.148]

Reactions in Water. The ionization potential for bromine is 11.8 eV and the electron affinity is 3.78 eV. The heat of dissociation of the Br2 molecule is 192 kj (46 kcal). The reduction potentials for bromine and oxybromide anions in aqueous acid solutions at 25°C are (21) ... [Pg.281]

Liquid bromine produces a mild cooling sensation on first contact with the skin. This is followed by a sensation of heat. If bromine is not removed immediately by flooding with water, the skin becomes red and finally brown, resulting in a deep bum that heals slowly. Contact with concentrated vapor can also cause bums and bflsters. Eor very small areas of contact in the laboratory, a 10% solution of sodium thiosulfate in water can neutralize bromine and such a solution should be available when working with bromine. Bromine is especially hazardous to the tissues of the eyes where severely painfiil and destmctive bums may result from contact with either Hquid or concentrated vapor. Ingestion causes severe bums to the gastrointestinal tract (62,63). [Pg.288]

Bromine in chloroform and bromine in acetic acid are the reagents used most often to brominate pyrazole. When nitric acid is used as a solvent, both bromine and chlorine transform pyrazoles into pyrazolones (Scheme 24). Thus 3-methyl-l-(2,4-dinitrophe-nyOpyrazole is brominated at the 4-position (309). The product reacts with chlorine and nitric acid to give the pyrazolone (310). The same product results from the action of bromine and nitric acid on (311). The electrophilic attack of halogen at C-4 is followed by the nucleophilic attack of water at C-5 and subsequent oxidation by nitric acid. [Pg.240]


See other pages where Bromine and water is mentioned: [Pg.35]    [Pg.50]    [Pg.35]    [Pg.50]    [Pg.210]    [Pg.117]    [Pg.167]    [Pg.187]    [Pg.282]    [Pg.289]    [Pg.469]    [Pg.479]    [Pg.695]    [Pg.976]    [Pg.149]    [Pg.327]    [Pg.332]    [Pg.189]    [Pg.280]    [Pg.304]    [Pg.294]    [Pg.457]    [Pg.239]   
See also in sourсe #XX -- [ Pg.7 , Pg.75 ]




SEARCH



2- and bromine

Bromination, and

Bromine Water

© 2024 chempedia.info