Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Washing salt solution from

In an olefins plant, the gas stream at a pressure of 140 to 180 psia is washed with a caustic soda solution to remove all acidic components present. Typically, the inlet gas contains 300 to 1,000 ppm of H2S plus CO2. The exit gas specifications will be 1 to 5 ppm by volume total acid gases in order to prevent freeze-up in the cold section fractionators. This caustic scrubber usually has been constructed with 30 to 50 total trays. The top three to five trays serve as a water-wash section to prevent caustic carry-over in the exit gas stream. The remaining trays constitute two or three pumparound sections. Fresh caustic solution is fed to the upper section along with the pumparound return liquid. Excess partially spent solution overflows a trap tray at the bottom of the section and goes to the next lower section where it is mixed with pumparound return liquid from the bottom of that section. The liquid effluent from the bottom of the column is a salt solution from which 65% to 75% of the sodium hydroxide has been consumed. The pressure drop through such a trayed column normally is 5 to 8 psi. [Pg.73]

In a 1500 ml. round-bottomed flask, carrying a reflux condenser, place 100 g. of pure cydohexanol, 250 ml. of concentrated hydrochloric acid and 80 g. of anhydrous calcium chloride heat the mixture on a boiling water bath for 10 hours with occasional shaking (1). Some hydrogen chloride is evolved, consequently the preparation should be conducted in the fume cupboard. Separate the upper layer from the cold reaction product, wash it successively with saturated salt solution, saturated sodium bicarbonate solution, saturated salt solution, and dry the crude cycZohexyl chloride with excess of anhydrous calcium chloride for at least 24 hours. Distil from a 150 ml. Claisen flask with fractionating side arm, and collect the pure product at 141-5-142-5°. The yield is 90 g. [Pg.275]

Cellulose. This is insoluble in water, hot and cold. It dissolves in a solution of Schweitzer s reagent (precipitated cupric hydroxide is washed free from salts and then dissolved in concentrated ammonia solution), from which it is precipitated by the addition of dilute acids. Cellulose is not hydrolysed by dilute hydrochloric acid. [Pg.458]

Cool the mixture and decant the solution from the sodium bromide wash the salt with two 20 ml. portions of absolute alcohol and add the washings to the main solution. Distil off the alcohol, which contains the slight excess of n-propyl bromide used in the condensation, through a short fractionating column from a water bath. The residue A) of crude ethyl n-propylacetoacetate may be used directly in the preparation of methyl n-butyl ketone. If the fairly pure ester is required, distil the crude product under diminished pressure and collect the fraction boihng at 109-113727 mm. (183 g.) (R). [Pg.481]

Ethyl S-n-butyl xanthate. Use 32 g. of potassium ethyl xanthate, 37 g. (23 ml.) of n-butyl iodide (Section 111,40) and 50 ml. of absolute ethyl alcohol. Reflux on a water bath for 3 hours. Pour into 150 ml. of water, saturate with salt (in order to facilitate the separation of the upper layer), remove the upper xanthate layer, wash it once with 25 ml. of saturated salt solution, and dry with anhydrous calcium chloride or anhydrous calcium sulphate. Distil from a 50 ml. Claisen flask under reduced pressure. Collect the pale yellow ethyl S-n-butyl xanthate at 90-91°/4 mm. The yield is 34 g. [Pg.499]

The reduction is effected exactly as in Procedure 8a but using 0.61 g (0.088 g-atom) of lithium. After the crude reaction product has been washed well on the filter with cold water, it is dissolved in ethyl acetate, the solution is filtered through the sintered glass funnel to remove iron compounds from the ammonia, and the filtrate is extracted with saturated salt solution. The organic layer is dried over sodium sulfate and the solvent is removed. The solid residue is crystallized from methanol (120 ml) using Darco. The mixture is cooled in an ice-bath, the solid is collected, rinsed with cold methanol, and then air-dried to give 12.9 g (85%), mp 129-132° reported for the tetrahydropyranyi ether of 3j5-hydroxypregn-5-en-20-one, mp 129-131°. [Pg.56]


See other pages where Washing salt solution from is mentioned: [Pg.233]    [Pg.539]    [Pg.233]    [Pg.217]    [Pg.217]    [Pg.175]    [Pg.175]    [Pg.177]    [Pg.179]    [Pg.502]    [Pg.243]    [Pg.172]    [Pg.323]    [Pg.551]    [Pg.572]    [Pg.602]    [Pg.603]    [Pg.610]    [Pg.611]    [Pg.623]    [Pg.624]    [Pg.758]    [Pg.765]    [Pg.823]    [Pg.28]    [Pg.231]    [Pg.1151]    [Pg.47]    [Pg.440]    [Pg.490]    [Pg.153]    [Pg.154]    [Pg.392]    [Pg.1448]    [Pg.447]    [Pg.77]    [Pg.304]    [Pg.363]    [Pg.472]    [Pg.472]    [Pg.472]   


SEARCH



Salt washing

Washing salt solution from vessel

© 2024 chempedia.info