Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wacker oxidations palladium® chloride

PdCl2/CuCl2/02 (Wacker oxidation) (palladium chloride/cupric chloride/oxygen) Sulpholane/water RT to 100 terminal alkenes-> methyl ketones... [Pg.287]

METHOD 2 Without a doubt, this is the current world favorite for making P2Ps. This method is known as the Wacker oxidation and involves mixing safrole (or any other allylbenzene), palladium chloride, cuprous chloride and dimethylformamide in an oxygen atmosphere to get MD-P2P very quickly and in a totally clean manner [11, 12]. There s also a very nice review in ref. 13. [Pg.60]

The direct oxidation of ethylene is used to produce acetaldehyde (qv) ia the Wacker-Hoechst process. The catalyst system is an aqueous solution of palladium chloride and cupric chloride. Under appropriate conditions an olefin can be oxidized to form an unsaturated aldehyde such as the production of acroleia [107-02-8] from propjiene (see Acrolein and derivatives). [Pg.472]

The palladium chloride process for oxidizing olefins to aldehydes in aqueous solution (Wacker process) apparendy involves an intermediate anionic complex such as dichloro(ethylene)hydroxopalladate(II) or else a neutral aqua complex PdCl2 (CH2=CH2)(H2 0). The coordinated PdCl2 is reduced to Pd during the olefin oxidation and is reoxidized by the cupric—cuprous chloride couple, which in turn is reoxidized by oxygen, and the net reaction for any olefin (RCH=CH2) is then... [Pg.171]

Palladium-catalyzed oxidation of hydrocarbons has been a matter of intense research for about four decades. The field was initiated by the development of the aerobic oxidation of ethylene to acetaldehyde catalyzed by palladium chloride and co-catalyzed by cupric chloride (the Wacker process, equation l)1. [Pg.653]

The reaction is highly exothermic as one might expect for an oxidation reaction. The mechanism is shown in Figure 15.1. Palladium chloride is the catalyst, which occurs as the tetrachloropalladate in solution, the resting state of the catalyst. Two chloride ions are replaced by water and ethene. Then the key-step occurs, the attack of a second water molecule (or hydroxide) to the ethene molecule activated towards a nucleophilic attack by co-ordination to the electrophilic palladium ion. The nucleophilic attack of a nucleophile on an alkene coordinated to palladium is typical of Wacker type reactions. [Pg.321]

The electrochemical Wacker-type oxidation of terminal olefins (111) by using palladium chloride or palladium acetate in the presence of a suitable oxidant leading to 2-alkanones (112) has been intensively studied. As recyclable double-mediatory systems (Scheme 43), quinone, ferric chloride, copper acetate, and triphenylamine have been used as co-oxidizing agents for regeneration of the Pd(II) catalyst [151]. The palladium-catalyzed anodic oxidation of... [Pg.513]

The more expedient, direct catalytic oxidation route to acetone was developed in Germany in the 1960s. If you had been in charge of building the acetone business from scratch, you d probably not have built any IPA-to-acetone plants if you had known about the Wacker process. It s a catalytic oxidation of propylene at 200—250°F and 125—200 psi over palladium chloride with a cupric (copper) chloride promoter. The yields are 91-94%. The hardware for the Wacker process is probably less than for the combined IPA/acetone plants. But once the latter plants were built, the economies of the Wacker process were not sufficient to shut them down and start all over. So the new technology never took hold in the United States. [Pg.243]

WACKER REACTION. The oxidation of ethylene to acetaldehyde in the presence of palladium chloride and cupric chloride. [Pg.1709]

The oxidative carbonylation of arenes to aromatic acids is a useful reaction which can be performed in the presence of Wacker-type palladium catalysts (equation 176). The stoichiometric reaction of Pd(OAc)2 with various aromatic compounds such as benzene, toluene or anisole at 100 °C in the presence of CO gives aromatic acids in low to fair yields.446 This reaction is thought to proceed via CO insertion between a palladium-carbon (arene) allyl chloride, but substantial amounts of phenol and coupling by-products are formed.447... [Pg.369]

The oxidation of olefins to aldehydes using a palladium chloride-copper(II) chloride catalyst, the Wacker Process, is a well-established industrial reaction. The mechanism of this reaction has not been established in detail, but it most probably involves a cr-7r rearrangement... [Pg.238]

The cycle approach for oxidation has been adopted at an industrial level for the Wacker-Chemie process for acetaldehyde production, in which ethylene is first put in contact with the oxidized catalyst solution, containing palladium chloride, and in the second step the solution containing the reduced catalyst is sent to a regeneration reactor containing cupric chloride and inside which also air is fed. The regenerated catalyst solution is returned to the first oxidation stage. Another industrial application is the Lummus process for the anaerobic ammoxidation of o-xylene to o-phthaloni-trile [68]. Du Pont has developed the oxidation of n-butane to maleic anhydride catalyzed by V/P/O, in a CFBR reactor, and built a demonstration unit in Spain [69] however, a few years ago the plant was shut down, due to the bad economics. [Pg.308]

Acetic acid is manufactured by three processes acetaldehyde oxidation, //-butane oxidation, and methanol carbonylation.Ethylene is the exclusive organic raw material for making acetaldehyde, 70 percent of which is further oxidized to acetic acid or acetic anhydride. The single-stage (Wacker) process for making acetaldehyde involves cupric chloride and a small amount of palladium chloride in aqueous solution as a catalyst. [Pg.11]

The aqueous palladium chloride oxidation of ethylene to acetaldehyde has been developed into an important commercial process. The discovery of how to make the reaction catalytic with respect to palladium chloride was, perhaps, as important to the process as the discovery of the oxidation reaction itself. This process known as the Wacker-Process, employs cupric chloride as a catalyst for the oxygen (air) reoxidation of... [Pg.9]

To overcome the problems encountered in the homogeneous Wacker oxidation of higher alkenes several attempts have been undertaken to develop a gas-phase version of the process. The first heterogeneous catalysts were prepared by the deposition of palladium chloride and copper chloride on support materials, such as zeolite Y [2,3] or active carbon [4]. However, these catalysts all suffered from rapid deactivation. Other authors applied other redox components such as vanadium pentoxide [5,6] or p-benzoquinone [7]. The best results have been achieved with catalysts based on palladium salts deposited on a monolayer of vanadium oxide spread out over a high surface area support material, such as y-alumina [8]. Van der Heide showed that with catalysts consisting of H2PdCU deposited on a monolayer vanadium oxide supported on y-alumina, ethene as well as 1-butene and styrene... [Pg.433]

The invention of the Wacker process was a triumph of common sense. It had been known since 1894 that ethylene is oxidized to acetaldehyde by palladium chloride in a stoichiometric reaction (Figure 27). However, it was not until 1956 that this reaction was combined with the known reoxidation reactions of palladium by copper and, in turn of copper by oxygen. The total process developed by Wacker and Hoechst between 1957 and 1959 can be depicted as an exothermic catalytic direct oxidation to yield acetaldehyde. [Pg.66]

Among the most significant developments in the field of catalysis in recent years have been the discovery and elucidation of various new, and often novel, catalytic reactions of transition metal ions and coordination compounds 13, 34). Examples of such reactions are the hydrogenation of olefins catalyzed by complexes of ruthenium (36), rhodium (61), cobalt (52), platinum (3, 26, 81), and other metals the hydroformylation of olefins catalyzed by complexes of cobalt or rhodium (Oxo process) (6, 46, 62) the dimerization of ethylene (i, 23) and polymerization of dienes (15, 64, 65) catalyzed by complexes of rhodium double-bond migration in olefins catalyzed by complexes of rhodium (24,42), palladium (42), cobalt (67), platinum (3, 5, 26, 81), and other metals (27) the oxidation of olefins to aldehydes, ketones, and vinyl esters, catalyzed by palladium chloride (Wacker process) (47, 48, 49,... [Pg.1]

In a stereochemical study f-Cethylenel-da (C2H2D2) [32] was reacted with palladium chloride and cupric chloride under extreme conditions, i. e., extremely high chloride ion concentration as cupric and lithium chlorides. Under such conditions 2-chloroethanol was formed as the main product from ethylene, besides some acetaldehyde [33] (see Section 2.4.1.5.1) this is not the normal product of the Wacker reaction. In the above study the formation of cis-, 2-dideuterioethylene oxide, evidently via 1,2-dideuterio-2-chloroethanoI, suggests trans addition of water (nnh-hydroxypalladation). [Pg.394]

WACKER OXIDATION Allyltrimethyl-silane. Bis(acetonitrile)chloronitro-palladiumUI). Palladium(II) chloride. Triethylborane. [Pg.510]

The selectivity of palladium and gold for alkene oxidation to aldehydes 28,29,170) was attributed initially to adsorption strength. However, electrooxidation in the presence of palladium ions indicates possible homogeneous alkene insertion, similar to the Wacker process 304). Homogeneous reaction is also involved in redox oxidations of hydrocarbons. In this case, the nature of the metal ions is expected to control selectivity. Indeed, toluene yields 20% benzaldehyde in electrolytes containing Ce salts, while oxidation proceeds to benzoic acid with Cr redox catalysts 311). In addition, the concentration of redox catalysts appears to affect yields in nonelectrochemical oxidation of ethylene large amounts of palladium chloride promote butene formation at the expense of acetaldehyde 312). Finally, the role of the electrolyte and solvent should not be ignored. For instance, electrooxidation of ethylene on carbon, in aqueous solution of acetic acid yields acetaldehyde 313) in the... [Pg.282]

Lead tetraacetate initiates a similar type of oxidation with terminal alkenes, in the presence of acid, to give an aldehyde hy selective oxidation of the terminal carhon. l Ajj example is the conversion of styrene to phenylacetaldehyde in 98% yield. Palladium chloride (PdCl2) reacts with terminal alkenes, in the presence of oxygen and copper salts, to give a methyl ketone (this reaction is called the Wacker process and is discussed in sec. 12.6.A). It is more useful than the LTA oxidation. Oxidation of terminal alkenes with LTA leads to the aldehyde, whereas oxidation with PdCl2 leads to the methyl ketone. The PdCl2 oxidation is illustrated hy conversion of 402 to 403 in 77% yield, in Ikegami s synthesis of coriolin. ... [Pg.279]

The first process to be discussed is a traditional one that probably does not occur via a Jt-complex. Nonetheless, it sets the stage for the organopalladium chemistry to be discussed in this section. The Wacker process (or the Wacker oxidation) is used in industry to convert ethylene to acetaldehyde using soluble palladium catalysts.207 in this reaction, ethylene reacts with cupric chloride (CuCl2) and palladium chloride (PdCl2) to... [Pg.1110]

The palladium chloride-coppeifll) chloride couple (28, 29) used industrially in the Wacker process oxidizes olefins to carbonyl compounds. Experimental kinetic and isotope effect data (30) seem to indicate that a TT-olefin complex is initially formed in a series of preequilibrium steps. The rate-determining step is postulated to be a rearrangement of the TT-olefin complex to a cr-complex followed by the final breakdown of the cr-complex to products. Figure 13 depicts the widely accepted Henry mechanism (31). [Pg.253]

Cuprous chloride tends to form water-soluble complexes with lower olefins and acts as an IPTC catalyst, e.g., in the two-phase hydrolysis of alkyl chlorides to alcohols with sodium carboxylate solution [10,151] and in the Prins reactions between 1-alkenes and aqueous formaldehyde in the presence of HCl to form 1,3-glycols [10]. Similarly, water-soluble rhodium-based catalysts (4-diphenylphosphinobenzoic acid and tri-Cs-io-alkylmethylam-monium chlorides) were used as IPTC catalysts for the hydroformylation of hexene, dodecene, and hexadecene to produce aldehydes for the fine chemicals market [152]. Palladium diphenyl(potassium sulfonatobenzyl)phosphine and its oxide complexes catalyzed the IPTC dehalogenation reactions of allyl and benzyl halides [153]. Allylic substrates such as cinnamyl ethyl carbonate and nucleophiles such as ethyl acetoactate and acetyl acetone catalyzed by a water-soluble bis(dibenzylideneacetone)palladium or palladium complex of sulfonated triphenylphosphine gave regio- and stereo-specific alkylation products in quantitative yields [154]. Ito et al. used a self-assembled nanocage as an IPTC catalyst for the Wacker oxidation of styrene catalyzed by (en)Pd(N03) [155]. [Pg.269]

It has already been mentioned (Section 9.2) that the Wacker reaction occurs regiospecifically. Thus, 1-olefins give oxidation with palladium chloride to methylketones according to Markovnikov s rule. The synthetic reactions were carried out stoichiometrically as well as catalytically. [Pg.151]


See other pages where Wacker oxidations palladium® chloride is mentioned: [Pg.1538]    [Pg.169]    [Pg.10]    [Pg.149]    [Pg.1197]    [Pg.625]    [Pg.433]    [Pg.159]    [Pg.491]    [Pg.15]    [Pg.1774]    [Pg.374]    [Pg.174]    [Pg.309]    [Pg.94]    [Pg.152]    [Pg.154]   
See also in sourсe #XX -- [ Pg.499 ]




SEARCH



Oxidation chloride

Oxidation palladium

Oxide chlorides

Palladium Wacker oxidation

Palladium chloride

Palladium chloride, oxidation

Palladium oxide

Palladium oxidized

Wacker

Wacker oxidation

Wackers Oxidation

© 2024 chempedia.info