Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity molecules

Typically, the electrolytes currently used by the Li-ion battery indnstry as well as the research conununity are composed of Uthium salt dissolved in a mixture of high dielectric constant molecules, such as cyclic carbonate solvents, EC or PC, and low-viscosity molecules, such as linear carbonate solvents, which inclnde DMC, DEC, and EMC. We already knew that cyclic carbonate (EC) possesses an unsynunetrical precedence in participating surface reductions, despite its relatively low population in most electrolyte formulations [39]. Recent studies suggested that the solvents reanited by LP into its primary solvation sheath are the precursors of interphasial chanistry, and most researchers believe that LP prefers to solvate to solvent molecules with higher dielectric constant [46, 47] and also believe that the donicity (donor number) prevails [48]. [Pg.246]

Departures from direct viscosity dependence may be observed for molecules which are small, or linear or flat, so that they can rotate or librate for a while in between neighboring molecules. Three correlation times t, t, are given for some such molecules in Table 4. Departures are observed also for high or low viscosities. Molecules such as ammonia which rotate rather freely in the liquid phase are better described by an inertial rotation model, according to which... [Pg.348]

As a liquid approaches its critical conditions, its density decreases and consequently the distance between molecules increases resulting in a rapid decrease in viscosity. [Pg.127]

When fluid flow in the reservoir is considered, it is necessary to estimate the viscosity of the fluid, since viscosity represents an internal resistance force to flow given a pressure drop across the fluid. Unlike liquids, when the temperature and pressure of a gas is increased the viscosity increases as the molecules move closer together and collide more frequently. [Pg.107]

Unlike gases, liquid viscosity decreases as temperature increases, as the molecules move further apart and decrease their internal friction. Like gases, oil viscosity increases as the pressure increases, at least above the bubble point. Below the bubble point, when the solution gas is liberated, oil viscosity increases because the lighter oil components of the oil (which lower the viscosity of oil) are the ones which transfer to the gas phase. [Pg.109]

Other SFA studies complicate the picture. Chan and Horn [107] and Horn and Israelachvili [108] could explain anomalous viscosities in thin layers if the first layer or two of molecules were immobile and the remaining intervening liquid were of normal viscosity. Other inteipretations are possible and the hydrodynamics not clear, since as Granick points out [109] the measurements average over a wide range of surface separations, thus confusing the definition of a layer thickness. McKenna and co-workers [110] point out that compliance effects can introduce serious corrections in constrained geometry systems. [Pg.246]

With the knowledge now of the magnitude of the mobility, we can use equation A2.4.38 to calculate the radii of the ions thus for lithium, using the value of 0.000 89 kg s for the viscosity of pure water (since we are using the conductivity at infinite dilution), the radius is calculated to be 2.38 x 10 m (=2.38 A). This can be contrasted with the crystalline ionic radius of Li, which has the value 0.78 A. The difference between these values reflects the presence of the hydration sheath of water molecules as we showed above, the... [Pg.574]

The relation between the microscopic friction acting on a molecule during its motion in a solvent enviromnent and macroscopic bulk solvent viscosity is a key problem affecting the rates of many reactions in condensed phase. The sequence of steps leading from friction to diflfiision coefficient to viscosity is based on the general validity of the Stokes-Einstein relation and the concept of describing friction by hydrodynamic as opposed to microscopic models involving local solvent structure. In the hydrodynamic limit the effect of solvent friction on, for example, rotational relaxation times of a solute molecule is [ ]... [Pg.853]

Small molecules in low viscosity solutions have, typically, rotational correlation times of a few tens of picoseconds, which means that the extreme narrowing conditions usually prevail. As a consequence, the interpretation of certain relaxation parameters, such as carbon-13 and NOE for proton-bearing carbons, is very simple. Basically, tlie DCC for a directly bonded CH pair can be assumed to be known and the experiments yield a value of the correlation time, t. One interesting application of the measurement of is to follow its variation with the site in the molecule (motional anisotropy), with temperature (the correlation... [Pg.1513]

Single molecules also have promise as probes for local stmcture when doped into materials tliat are tliemselves nonfluorescent. Rlrodamine dyes in botli silicate and polymer tliin films exliibit a distribution of fluorescence maxima indicative of considerable heterogeneity in local environments, particularly for the silicate material [159]. A bimodal distribution of fluorescence intensities observed for single molecules of crystal violet in a PMMA film has been suggested to result from high and low viscosity local sites witliin tire polymer tliat give rise to slow and fast internal conversion, respectively [160]. [Pg.2500]

Most properties of linear polymers are controlled by two different factors. The chemical constitution of tire monomers detennines tire interaction strengtli between tire chains, tire interactions of tire polymer witli host molecules or witli interfaces. The monomer stmcture also detennines tire possible local confonnations of tire polymer chain. This relationship between the molecular stmcture and any interaction witli surrounding molecules is similar to tliat found for low-molecular-weight compounds. The second important parameter tliat controls polymer properties is tire molecular weight. Contrary to tire situation for low-molecular-weight compounds, it plays a fimdamental role in polymer behaviour. It detennines tire slow-mode dynamics and tire viscosity of polymers in solutions and in tire melt. These properties are of utmost importance in polymer rheology and condition tlieir processability. The mechanical properties, solubility and miscibility of different polymers also depend on tlieir molecular weights. [Pg.2514]

Monte Carlo simulations require less computer time to execute each iteration than a molecular dynamics simulation on the same system. However, Monte Carlo simulations are more limited in that they cannot yield time-dependent information, such as diffusion coefficients or viscosity. As with molecular dynamics, constant NVT simulations are most common, but constant NPT simulations are possible using a coordinate scaling step. Calculations that are not constant N can be constructed by including probabilities for particle creation and annihilation. These calculations present technical difficulties due to having very low probabilities for creation and annihilation, thus requiring very large collections of molecules and long simulation times. [Pg.63]

This chapter focuses on the simulation of bulk liquids. This is a dilferent task from modeling solvation effects, which are discussed in Chapter 24. Solvation effects are changes in the properties of the solute due to the presence of a solvent. They are defined for an individual molecule or pair of molecules. This chapter discusses the modeling of bulk liquids, which implies properties that are not defined for an individual molecule, such as viscosity. [Pg.302]

Nonfractionating continuous inlet. An inlet in which gas flows from a gas stream being analyzed to the mass spectrometer ion source without any change in the conditions of flow through the inlet or by the conditions of flow through the ion source. This flow is usually viscous flow, such that the mean free path is very small in comparison with the smallest dimension of a traverse section of the channel. The flow characteristics are determined mainly by collisions between gas molecules, i.e., the viscosity of the gas. The flow can be laminar or turbulent. [Pg.433]

The cellulose molecule contains three hydroxyl groups which can react and leave the chain backbone intact. These alcohol groups can be esterified with acetic anhydride to form cellulose acetate. This polymer is spun into the fiber acetate rayon. Similarly, the alcohol groups in cellulose react with CS2 in the presence of strong base to produce cellulose xanthates. When extruded into fibers, this material is called viscose rayon, and when extruded into sheets, cellophane. In both the acetate and xanthate formation, some chain degradation also occurs, so the resulting polymer chains are shorter than those in the starting cellulose. [Pg.18]

Strauss and Williamst have studied coil dimensions of derivatives of poly(4-vinylpyridine) by light-scattering and viscosity measurements. The derivatives studied were poly(pyridinium) ions quaternized y% with n-dodecyl groups and (1 - y)% with ethyl groups. Experimental coil dimensions extrapolated to 0 conditions and expressed relative to the length of a freely rotating repeat unit are presented here for the molecules in two different environments ... [Pg.70]

In this chapter we examine the flow behavior of bulk polymers in the liquid state. Such substances are characterized by very high viscosities, a property which is directly traceable to the chain structure of the molecules. All substances are viscous, even low molecular weight gases. The enhancement of this property due to the molecular structure of polymers is one of the most striking features of these materials. [Pg.75]

Our approach in this chapter is to alternate between experimental results and theoretical models to acquire familiarity with both the phenomena and the theories proposed to explain them. We shall consider a model for viscous flow due to Eyring which is based on the migration of vacancies or holes in the liquid. A theory developed by Debye will give a first view of the molecular weight dependence of viscosity an equation derived by Bueche will extend that view. Finally, a model for the snakelike wiggling of a polymer chain through an array of other molecules, due to deGennes, Doi, and Edwards, will be taken up. [Pg.76]

The deforming forces which induce flow in fluids are not recovered when these forces are removed. These forces impart kinetic energy to the fluid, an energy which is dissipated within the fluid. This is the origin of the idea that viscosity represents an internal friction which resists flow. This friction originates from the way molecules of the sample interact during flow. [Pg.80]

Newtonian behavior the rate of shear is small compared to the rate constant for the flow process. When molecular displacements occur very much faster than the rate of shear (7 < kj ), the molecules show maximum efficiency in dissipating the applied forces. When the molecules cannot move fast enough to keep pace with the external forces, they couple with and dissipate those forces to a lesser extent. Thus there is a decrease in viscosity from its upper, Newtonian limit with increasing 7/kj. The rate constant for the flow process is therefore seen to define a standard against which the rate of shear is to be judged large or small. In the next section we shall consider a molecular model in terms of which this rate constant can be analyzed. [Pg.87]

Of the adjustable parameters in the Eyring viscosity equation, kj is the most important. In Sec. 2.4 we discussed the desirability of having some sort of natural rate compared to which rates of shear could be described as large or small. This natural standard is provided by kj. The parameter kj entered our theory as the factor which described the frequency with which molecules passed from one equilibrium position to another in a flowing liquid. At this point we will find it more convenient to talk in terms of the period of this vibration rather than its frequency. We shall use r to symbolize this period and define it as the reciprocal of kj. In addition, we shall refer to this characteristic period as the relaxation time for the polymer. As its name implies, r measures the time over which the system relieves the applied stress by the relative slippage of the molecules past one another. In summary. [Pg.98]


See other pages where Viscosity molecules is mentioned: [Pg.5]    [Pg.109]    [Pg.372]    [Pg.5]    [Pg.109]    [Pg.372]    [Pg.179]    [Pg.240]    [Pg.111]    [Pg.246]    [Pg.334]    [Pg.524]    [Pg.525]    [Pg.584]    [Pg.664]    [Pg.820]    [Pg.853]    [Pg.854]    [Pg.855]    [Pg.857]    [Pg.1514]    [Pg.1739]    [Pg.2513]    [Pg.2521]    [Pg.189]    [Pg.189]    [Pg.426]    [Pg.16]    [Pg.80]    [Pg.105]    [Pg.106]    [Pg.111]    [Pg.116]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Coil molecules intrinsic viscosity

© 2024 chempedia.info