Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscoelastic behavior dynamic mechanical

Keywords Viscoelasticity Glass transition temperature Relaxational processes Dielectric behavior Dynamic mechanical behavior Poly(methacrylate)s Poly (itaconate)s Poly(thiocarbonate)s Spacer groups Side chains Molecular motions... [Pg.43]

We have relied heavily on the use of models in discussing the viscoelastic behavior of polymers in the transient and dynamic experiments of the last few sections. The models were mechanical, however, and while they provide a way for understanding the phenomena involved, they do not explicitly relate these phenomena to molecular characteristics. To establish this connection is the objective of this section. [Pg.185]

To complete the mechanical response description in this book, the phenomena of viscoelasticity, spall (dynamic tensile behavior), melting, and compression of porous solids are briefly considered. [Pg.45]

There are several other comparable rheological experimental methods involving linear viscoelastic behavior. Among them are creep tests (constant stress), dynamic mechanical fatigue tests (forced periodic oscillation), and torsion pendulum tests (free oscillation). Viscoelastic data obtained from any of these techniques must be consistent data from the others. [Pg.42]

Contrary to the phase separation curve, the sol/gel transition is very sensitive to the temperature more cations are required to get a gel phase when the temperature increases and thus the extension of the gel phase decreases [8]. The sol/gel transition as determined above is well reproducible but overestimates the real amount of cation at the transition. Gelation is a transition from liquid to solid during which the polymeric systems suffers dramatic modifications on their macroscopic viscoelastic behavior. The whole phenomenon can be thus followed by the evolution of the mechanical properties through dynamic experiments. The behaviour of the complex shear modulus G (o)) reflects the distribution of the relaxation time of the growing clusters. At the gel point the broad distribution of... [Pg.41]

Rheological Properties Measurements. The viscoelastic behavior of the UHMWPE gel-like systems was studied using the Rheometric Mechanical Spectrometer (RMS 705). A cone and plate fixture (radius 1.25 cm cone angle 9.85 x 10" radian) was used for the dynamic frequency sweep, and the steady state shear rate sweep measurements. In order to minimize the error caused by gap thickness change during the temperature sweep, the parallel plates fixture (radius 1.25 cm gap 1.5 mm) was used for the dynamic temperature sweep measurements. [Pg.23]

Dynamic mechanical analysis (DMA) or dynamic mechanical thermal analysis (DMTA) provides a method for determining elastic and loss moduli of polymers as a function of temperature, frequency or time, or both [1-13]. Viscoelasticity describes the time-dependent mechanical properties of polymers, which in limiting cases can behave as either elastic solids or viscous liquids (Fig. 23.2). Knowledge of the viscoelastic behavior of polymers and its relation to molecular structure is essential in the understanding of both processing and end-use properties. [Pg.198]

Dynamic mechanical experiments yield both the elastic modulus of the material and its mechanical damping, or energy dissipation, characteristics. These properties can be determined as a function of frequency (time) and temperature. Application of the time-temperature equivalence principle [1-3] yields master curves like those in Fig. 23.2. The five regions described in the curve are typical of polymer viscoelastic behavior. [Pg.198]

The dynamic mechanical thermal analyzer (DMTA) is an important tool for studying the structure-property relationships in polymer nanocomposites. DMTA essentially probes the relaxations in polymers, thereby providing a method to understand the mechanical behavior and the molecular structure of these materials under various conditions of stress and temperature. The dynamics of polymer chain relaxation or molecular mobility of polymer main chains and side chains is one of the factors that determine the viscoelastic properties of polymeric macromolecules. The temperature dependence of molecular mobility is characterized by different transitions in which a certain mode of chain motion occurs. A reduction of the tan 8 peak height, a shift of the peak position to higher temperatures, an extra hump or peak in the tan 8 curve above the glass transition temperature (Tg), and a relatively high value of the storage modulus often are reported in support of the dispersion process of the layered silicate. [Pg.109]

Filler-filler interaction (Payne effect) - The introduction of reinforcing fillers into rubbery matrices strongly modifies the viscoelastic behavior of the materials. In dynamic mechanical measurements, with increasing strain amplitude, reinforced samples display a decrease of the storage shear modulus G. This phenomenon is commonly known as the Payne effect and is due to progressive destruction of the filler-filler interaction [46, 47]. The AG values calculated from the difference in the G values measured at 0.56% strain and at 100% strain in the unvulcanized state are used to quantify the Payne effect. [Pg.198]

As shown in Chapter 10, molecular dynamics in polymers is characterized by localised and cooperative motions that are responsible for the existence of different relaxations (a, (3, y). These, in turn, are responsible for energy dissipation, mechanical damping, mechanical transitions and, more generally, of what is called a viscoelastic behavior - intermediary between an elastic solid and a viscous liquid (Ferry, 1961 McCrum et al., 1967). [Pg.347]

Summary In this chapter, a discussion of the viscoelastic properties of selected polymeric materials is performed. The basic concepts of viscoelasticity, dealing with the fact that polymers above glass-transition temperature exhibit high entropic elasticity, are described at beginner level. The analysis of stress-strain for some polymeric materials is shortly described. Dielectric and dynamic mechanical behavior of aliphatic, cyclic saturated and aromatic substituted poly(methacrylate)s is well explained. An interesting approach of the relaxational processes is presented under the experience of the authors in these polymeric systems. The viscoelastic behavior of poly(itaconate)s with mono- and disubstitutions and the effect of the substituents and the functional groups is extensively discussed. The behavior of viscoelastic behavior of different poly(thiocarbonate)s is also analyzed. [Pg.43]

Isothermal measurements of the dynamic mechanical behavior as a function of frequency were carried out on the five materials listed in Table I. Numerous isotherms were obtained in order to describe the behavior in the rubbery plateau and in the terminal zone of the viscoelastic response curves. An example of such data is shown in Figure 6 where the storage shear modulus for copolymer 2148 (1/2) is plotted against frequency at 10 different temperatures. [Pg.245]

In this section we are going to examine such viscoelastic properties in some detail and we will start by examining in turn three important mechanical methods of measurement creep, stress relaxation, and dynamic mechanical analysis. This will lead us to interesting things like time-temperature equivalence and a discussion of the molecular basis of what we have referred to as relaxation behavior. [Pg.445]

Dynamic mechanical measurements are performed at very small strains in order to ensure that linear viscoelasticity relations can be applied to the data. Stress-strain data involve large strain behavior and are accumulated in the nonlinear region. In other words, the tensile test itself alters the structure of the test specimen, which usually cannot be cycled back to its initial state. (Similarly, dynamic deformations at large strains test the fatigue resistance of the material.)... [Pg.420]

The mechanical behavior of the hydrogels can be described by the theories of rubber elasticity and viscoelasticity, which are based on time-independent and time-dependent recovery of the chain orientation and structure, respectively. Mechanical properties due to rubber elastic behavior of hydrogels can be determined by tensile measurements, while the viscoelastic behavior can be determined through dynamic mechanical analysis. [Pg.2026]

Although the supramolecular polymers based on bifunctional ureidopyrimidinone derivatives in many ways behave like conventional polymers, the strong temperature dependence of their mechanical properties really sets them apart from macromolecular polymers. At room temperature, the supramolecular polymers show polymer-like viscoelastic behavior in bulk and solution, whereas at elevated temperatures liquid-like properties are observed. These changes are due to a 3-fold effect of temperature on the reversible polymer chain. Because of the temperature dependence of the Ka value of UPy association, the average DP of the chains is drastically reduced at elevated temperatures. Simultaneously, faster dynamics of the scission—recombination process leads to faster stress relaxation in an entangled system. These two effects occur in addition to the temperature-dependent stress relaxation processes that are also operative in melts... [Pg.316]

Dynamic mechanical properties. The parameters characterizing the dynamic mechanical behavior of Series E and Series F are summarized in Table IV. Several of the viscoelastic parameters will now be discussed in detail. [Pg.141]

Characterization by DMS and DSC. Although characterization of small-strain viscoelastic and stress-strain behavior is not yet complete, preliminary dynamic mechanical spectroscopy (DMS) and differential scanning calorimetry (DSC) data were obtained for the blends having the highest and lowest molecular weights. [Pg.313]


See other pages where Viscoelastic behavior dynamic mechanical is mentioned: [Pg.179]    [Pg.151]    [Pg.198]    [Pg.86]    [Pg.527]    [Pg.44]    [Pg.204]    [Pg.338]    [Pg.22]    [Pg.45]    [Pg.50]    [Pg.198]    [Pg.126]    [Pg.151]    [Pg.205]    [Pg.210]    [Pg.120]    [Pg.131]    [Pg.244]    [Pg.86]    [Pg.261]    [Pg.70]    [Pg.8]    [Pg.64]    [Pg.67]    [Pg.311]    [Pg.199]    [Pg.137]    [Pg.332]    [Pg.348]    [Pg.37]   


SEARCH



DYNAMIC VISCOELASTIC

Dynamic behavior

Dynamic mechanical behavior

Dynamic mechanical measurements viscoelastic behavior

Dynamic mechanisms

Dynamical mechanical

Mechanical behavior

Viscoelastic behavior

Viscoelastic behavior mechanisms

Viscoelastic behavior viscoelasticity

Viscoelasticity behavior

© 2024 chempedia.info