Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Study virtual

The Sampling Distributions of Functions of Interest From Afj Virtual Studies... [Pg.1040]

Calculate summary statistics of the function of interest in each virtual study, i.e., quantiles, mean, and median. [Pg.1040]

Step 3. Derive the summary statistics of required parameters across virtual studies with their associated standard deviations. [Pg.1041]

Figure 42.2 illustrates the results obtained with the RS approach using paired and unpaired data at different replication levels (i.e., Mi equals 10,100, and 500 to build up the population pool). This was then followed by a calculation of TPAR over M2 (i.e., 50) virtual studies (with N = IS for each study). Across all three population pool levels (i.e.. Mi = 10, 100, and 500), paired observations consistently yielded tighter distributions than unpaired ones. Similar results were obtained with the PpbB approach. [Pg.1042]

Reservoir quality maps are used to illustrate the lateral distribution of reservoir parameters such as net sand, porosity or reservoir thickness. It is important to know whether thickness values are isochore or isopach (see Figure 5.46). Isochore maps are useful if properties related to a fluid column are contoured, e.g. net oil sand. Isopach maps are used for sedimentological studies, e.g. to show the lateral thinning out of a sand body. In cases of low structural dip (<12°) isochore and isopach thickness are virtually the same. [Pg.142]

The most powerful teclmique for studying VER in polyatomic molecules is the IR-Raman method. Initial IR-Raman studies of a few systems appeared more than 20 years ago [16], but recently the teclmique has taken on new life with newer ultrafast lasers such as Ti sapphire [39]. With more sensitive IR-Raman systems based on these lasers, it has become possible to monitor VER by probing virtually every vibration of a polyatomic molecule, as illustrated by recent studies of chlorofonn [40], acetonitrile [41, 42] (see example C3.5.6.6 below) and nitromethane [39, 43]. [Pg.3035]

An extensive series of studies for the prediction of aqueous solubility has been reported in the literature, as summarized by Lipinski et al. [15] and jorgensen and Duffy [16]. These methods can be categorized into three types 1 correlation of solubility with experimentally determined physicochemical properties such as melting point and molecular volume 2) estimation of solubility by group contribution methods and 3) correlation of solubility with descriptors derived from the molecular structure by computational methods. The third approach has been proven to be particularly successful for the prediction of solubility because it does not need experimental descriptors and can therefore be applied to collections of virtual compounds also. [Pg.495]

It is regretted that the size of the volume has rendered the insertion of literature references impossible the Selected Bibliography (A,5) may partly compensate for this omission. Section numbers are now included in the headings of the pages—a feature introduced in response to requests by many readers. The volume comprises virtually at least three books under one cover, viz., experimental technique, preparations, and qualitative organic analysis. It should therefore continue to be of value as a one volume reference work in the laboratory. Students at all levels will find their requirements for laboratory work (excluding quantitative organic analysis) adequately provided for and, furthermore, the writer hopes that the book will be used as a source of information to supplement their theoretical studies. [Pg.1192]

At one time benzene was widely used as a solvent This use virtually disappeared when statistical studies revealed an increased incidence of leukemia among workers exposed to atmospheric levels of benzene as low as 1 ppm Toluene has replaced benzene as an inexpensive organic solvent because it has similar solvent properties but has not been determined to be carcinogenic m the cell systems and at the dose levels that benzene is... [Pg.438]

As already indicated in Section 3.1, the study of mesoporous solids is closely bound up with the concept of capillary condensation and its quantitative expression in the Kelvin equation. This equation is, indeed, the basis of virtually all the various procedures for the calculation of pore size... [Pg.116]

Microstructure studies, by contrast, offer both a means to evaluate the reactivity ratios and also to test the model. The capability to investigate this type of structural detail was virtually nonexistent until the advent of modern instrumentation and even now is limited to sequences of modest length. [Pg.457]

It can be said that science is the art of budding models to explain observations and predict new ones. Chemistry, as the central science, utilizes models ia virtually every aspect of the discipline. From the first week of a first chemistry course, students use the scientific method to develop models which explain the behavior of the elements. Anyone who studies or uses chemistry has, ia fact, practiced some form of molecular modeling. [Pg.157]

In contrast, the ultrasonic irradiation of organic Hquids has been less studied. SusHck and co-workers estabHshed that virtually all organic Hquids wiU generate free radicals upon ultrasonic irradiation, as long as the total vapor pressure is low enough to allow effective bubble coUapse (49). The sonolysis of simple hydrocarbons (for example, alkanes) creates the same kinds of products associated with very high temperature pyrolysis (50). Most of these products (H2, CH4, and the smaller 1-alkenes) derive from a weU-understood radical chain mechanism. [Pg.262]

The throwaway fuel cycle does not recover the energy values present ia the irradiated fuel. Instead, all of the long-Hved actinides are routed to the final waste repository along with the fission products. Whether or not this is a desirable alternative is determined largely by the scope of the evaluation study. For instance, when only the value of the recovered yellow cake and SWU equivalents are considered, the world market values for these commodities do not fully cover the cost of reprocessing (2). However, when costs attributable to the disposal of large quantities of actinides are considered, the classical fuel cycle has been the choice of virtually all countries except the United States. [Pg.202]

Toxicological Information. The toxicity of the higher olefins is considered to be virtually the same as that of the homologous paraffin compounds. Based on this analogy, the suggested maximum allowable concentration in air is 500 ppm. Animal toxicity studies for hexene, octene, decene, and dodecene have shown Httle or no toxic effect except under severe inhalation conditions. The inhalation LD q for 1-hexene is 33,400 ppm for these olefins both LD q (oral) and LD q (dermal) are >10 g/kg. [Pg.442]

Potassium Phosphates. The K2O—P20 —H2O system parallels the sodium system in many respects. In addition to the three simple phosphate salts obtained by successive replacement of the protons of phosphoric acid by potassium ions, the system contains a number of crystalline hydrates and double salts (Table 7). Monopotassium phosphate (MKP), known only as the anhydrous salt, is the least soluble of the potassium orthophosphates. Monopotassium phosphate has been studied extensively owing to its piezoelectric and ferroelectric properties (see Ferroelectrics). At ordinary temperatures, KH2PO4 is so far above its Curie point as to give piezoelectric effects in which the emf is proportional to the distorting force. There is virtually no hysteresis. [Pg.332]


See other pages where Study virtual is mentioned: [Pg.11]    [Pg.837]    [Pg.843]    [Pg.844]    [Pg.1039]    [Pg.1040]    [Pg.1041]    [Pg.1042]    [Pg.1046]    [Pg.1055]    [Pg.37]    [Pg.11]    [Pg.837]    [Pg.843]    [Pg.844]    [Pg.1039]    [Pg.1040]    [Pg.1041]    [Pg.1042]    [Pg.1046]    [Pg.1055]    [Pg.37]    [Pg.129]    [Pg.33]    [Pg.872]    [Pg.1490]    [Pg.2816]    [Pg.451]    [Pg.165]    [Pg.96]    [Pg.329]    [Pg.608]    [Pg.143]    [Pg.112]    [Pg.418]    [Pg.418]    [Pg.150]    [Pg.163]    [Pg.36]    [Pg.367]    [Pg.31]    [Pg.249]    [Pg.225]    [Pg.446]    [Pg.451]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



© 2024 chempedia.info