Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl polymers, properties

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Raw Materials. PVC is inherently a hard and brittle material and very sensitive to heat it thus must be modified with a variety of plasticizers, stabilizers, and other processing aids to form heat-stable flexible or semiflexible products or with lesser amounts of these processing aids for the manufacture of rigid products (see Vinyl polymers, vinyl chloride polymers). Plasticizer levels used to produce the desired softness and flexibihty in a finished product vary between 25 parts per hundred (pph) parts of PVC for flooring products to about 80—100 pph for apparel products (245). Numerous plasticizers (qv) are commercially available for PVC, although dioctyl phthalate (DOP) is by far the most widely used in industrial appHcations due to its excellent properties and low cost. For example, phosphates provide improved flame resistance, adipate esters enhance low temperature flexibihty, polymeric plasticizers such as glycol adipates and azelates improve the migration resistance, and phthalate esters provide compatibiUty and flexibihty (245). [Pg.420]

Lubricants. Process aids or lubricants promote smooth and rapid extmsion and calendering, prevent sticking to extmders or calender roUs, and impart good release properties to molding compounds. In some cases use of lubricants allow slightly lower processing temperatures (see Vinyl polymers). [Pg.327]

Aniline—formaldehyde resins were once quite important because of their excellent electrical properties, but their markets have been taken over by newer thermoplastic materials. Nevertheless, some aniline resins are stiU. used as modifiers for other resins. Acrylamide (qv) occupies a unique position in the amino resins field since it not only contains a formaldehyde reactive site, but also a polymerizable double bond. Thus it forms a bridge between the formaldehyde condensation polymers and the versatile vinyl polymers and copolymers. [Pg.322]

Vinyl Acetate—Ethylene Copolymers. In these random copolymers, the ratio of ethylene to vinyl acetate (EVA) is varied from 30—60%. As the vinyl acetate content increases, the oil and heat resistance increases. With higher ethylene content the physical strength, tensile, and tear increases. The polymers are cured with peroxide. The main properties of these elastomers include heat resistance, moderate oil and solvent resistance, low compression set, good weather resistance, high damping, exceUent o2one resistance, and they can be easily colored (see Vinyl polymers, poly(VINYL acetate)). [Pg.234]

An extensive investigation of the dilute solution properties of several acrylate copolymers has been reported (80). The behavior is typical of flexible-backbone vinyl polymers. The length of the acrylate ester side chain has Httle effect on properties. [Pg.433]

Vinyls. Vinyl resins are thermoplastic polymers made principally from vinyl chloride other monomers such as vinyl acetate or maleic anhydride are copolymerized to add solubUity, adhesion, or other desirable properties (see Maleic anhydride, maleic acid, and fumaric acid). Because of the high, from 4,000 to 35,000, molecular weights large proportions of strong solvents are needed to achieve appHcation viscosities. Whereas vinyls are one of the finest high performance systems for steel, many vinyl coatings do not conform to VOC requirements (see Vinyl polymers). [Pg.365]

Vinyl ester resins generally offer mechanical properties superior to those of polyester matrices but at an increased cost. Vinyl esters are chemically similar to epoxy resins but are manufactured via a cold-curing process similar to that used in the manufacture of polyester resins. Vinyl esters offer superior resistance to water and chemical attack and are used in such appHcations as underground pipes, tank liners, and storage tanks (see Vinyl polymers). [Pg.7]

Due to the high reaction temperatures required during the last stages of these syntheses, side reactions cannot be avoided. Acetaldehyde, carboxyl endgroups, and vinyl endgroups are formed during PET and PEN synthesis. The formation of 2,2/-oxydiethylene moieties in polymer chains by etherification of hydroxyl endgroups is also a well-known side reaction of EG polyester syntheses.264 These reactions should be carefully controlled since they can exert an important influence on polymer properties such as Ts, mechanical properties, hydrolytic stability, and discoloration. [Pg.71]

Because of the great differences in the properties between vinyl polymers and heterochain polymers, copolymerization of a vinyl monomer and a cyclic monomer seems very intersting. Yet, little success has been achieved in the formation of random copolymers because the reactivities are very different between vinyl monomers and cyclic monomers. However, recent progress in the field of organic chemistry has suggested many possibilities especially for the activation of monomers and for the modification of the reactivity of the propagating species. The probability of successful synthesis of random copolymers has thus greatly increased. [Pg.37]

Polymer properties, influence of ions, 258 Polymer surface reactions, kinetics, 322-323 Polymer transformation reactions configurational effect, 38 conformational effects, 38 hydrolysis of polyfmethyl methacrylate), 38 neighboring groups, 37-38 quaternization of poly(4-vinyl pyridine), 37-38 Polymerization, siloxanes, 239... [Pg.481]

It is well known that the mechanical and physical properties of vinyl polymers are dependent upon their stereochemical configuration. It is critical, therefore, that the stereoregularity of poly(TBTM/MMA) be determined accurately and conveniently if the field performance of the material is to be predicted with any certainty. The effectiveness of organometallic polymers as an anti-... [Pg.490]

The nature of the chain substituents strongly influence the properties of the resulting polymer. For instance, the influence of the nature of chain substituents on Tg is illustrated in Table 3 for a series of vinyl polymers. [Pg.28]

Crivello et al. synthesized block copolymers consisting of poly(DMS) and vinyl polymer sequences to modify the mechanical properties and solvent resistance of poly(DMS). They used tetraphenylethane derivatives incorporated into the poly(DMS) chain through hydrosilylation (Eq. 26) [124-126] ... [Pg.90]


See other pages where Vinyl polymers, properties is mentioned: [Pg.6]    [Pg.475]    [Pg.378]    [Pg.523]    [Pg.42]    [Pg.209]    [Pg.80]    [Pg.312]    [Pg.83]    [Pg.440]    [Pg.466]    [Pg.297]    [Pg.533]    [Pg.396]    [Pg.819]    [Pg.873]    [Pg.26]    [Pg.466]    [Pg.38]    [Pg.862]    [Pg.895]    [Pg.416]    [Pg.34]    [Pg.256]    [Pg.291]    [Pg.134]    [Pg.388]    [Pg.664]    [Pg.1]    [Pg.45]    [Pg.51]    [Pg.51]    [Pg.20]   
See also in sourсe #XX -- [ Pg.10 , Pg.54 ]

See also in sourсe #XX -- [ Pg.10 , Pg.54 ]

See also in sourсe #XX -- [ Pg.10 , Pg.56 ]




SEARCH



Polymer vinyl

Vinyl acetate polymers properties

Vinyl butyral polymers properties

Vinyl chloride polymers properties

Vinylic polymers

© 2024 chempedia.info