Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational radicals

In contrast to the bimoleciilar recombination of polyatomic radicals ( equation (A3.4.34)1 there is no long-lived intennediate AB smce there are no extra intramolecular vibrational degrees of freedom to accommodate the excess energy. Therefore, the fonnation of the bond and the deactivation tlirough collision with the inert collision partner M have to occur simultaneously (within 10-100 fs). The rate law for trimoleciilar recombination reactions of the type in equation (A3.4.47) is given by... [Pg.770]

Unstable species such as O, FI and N atoms, molecular radicals and vibrationally excited diatomics can be injected by passmg the appropriate gas tluough a microwave discharge. In a SIFT, the chemistry is usually straightforward since there is only one reactant ion and one neutral present in the flow tube. [Pg.809]

In contrast to the ionization of C q after vibrational excitation, typical multiphoton ionization proceeds via the excitation of higher electronic levels. In principle, multiphoton ionization can either be used to generate ions and to study their reactions, or as a sensitive detection technique for atoms, molecules, and radicals in reaction kinetics. The second application is more common. In most cases of excitation with visible or UV laser radiation, a few photons are enough to reach or exceed the ionization limit. A particularly important teclmique is resonantly enlianced multiphoton ionization (REMPI), which exploits the resonance of monocluomatic laser radiation with one or several intennediate levels (in one-photon or in multiphoton processes). The mechanisms are distinguished according to the number of photons leading to the resonant intennediate levels and to tire final level, as illustrated in figure B2.5.16. Several lasers of different frequencies may be combined. [Pg.2135]

This completes our introduction to the subject of rotational and vibrational motions of molecules (which applies equally well to ions and radicals). The information contained in this Section is used again in Section 5 where photon-induced transitions between pairs of molecular electronic, vibrational, and rotational eigenstates are examined. More advanced treatments of the subject matter of this Section can be found in the text by Wilson, Decius, and Cross, as well as in Zare s text on angular momentum. [Pg.360]

Although there has been some controversy concerning the processes involved in field ionization mass spectrometry, the general principles appear to be understood. Firstly, the ionization process itself produces little excess of vibrational and rotational energy in the ions, and, consequently, fragmentation is limited or nonexistent. This ionization process is one of the mild or soft methods available for producing excellent molecular mass information. The initially formed ions are either simple radical cations or radical anions (M ). [Pg.25]

Activation Parameters. Thermal processes are commonly used to break labile initiator bonds in order to form radicals. The amount of thermal energy necessary varies with the environment, but absolute temperature, T, is usually the dominant factor. The energy barrier, the minimum amount of energy that must be suppHed, is called the activation energy, E. A third important factor, known as the frequency factor, is a measure of bond motion freedom (translational, rotational, and vibrational) in the activated complex or transition state. The relationships of yi, E and T to the initiator decomposition rate (kJ) are expressed by the Arrhenius first-order rate equation (eq. 16) where R is the gas constant, and and E are known as the activation parameters. [Pg.221]

The primary and secondary products of photolysis of common diazirines are collected in Table 4. According to the table secondary reactions include not only isomerization of alkenes and hydrogen elimination to alkynes, but also a retro-Diels-Alder reaction of vibrationally excited cyclohexene, as well as obvious radical reactions in the case of excited propene. [Pg.226]

Each process parameter directly affects both the machinery dynamics and the vibration profiles. For example, the line tension, strip width, and hardness of the incoming strip radically affect the vibration profile generated by a continuous process line in a steel mill. With few exceptions, process variations such as these must be considered in the vibration analysis. [Pg.714]

Trend data also must be adjusted for maintenance and repair activities. Figure 44.34 illustrates an average trend curve that indicates a sharp rise in vibration levels. It also reflects that, after repair, the levels drop radically. At this point, all baseline and reference values should be reset. If this does not occur, the automatic trending capabilities of the computer-based system do not function properly. [Pg.733]

Repeated twisting of the spindle s tube or the solid shaft used in jackshafts results in a reduction in the flexible drive s stiffness. When this occurs, the drive loses some of its ability to absorb torsional transients. As a result, damage may result to the driven unit. Unfortunately, the limits of single-channel, frequency-domain data acquisition prevents accurate measurement of this failure mode. Most of the abnormal vibration that results from fatigue occurs in the relatively brief time interval associated with startup, when radical speed changes occur, or during shutdown of the machine-train. As a result, this type of data acquisition and analysis cannot adequately capture these... [Pg.751]

Condition monitoring is an established technique which has been used by capital-intensive or high-risk industries to protect their investment. The concept has developed radically in recent years largely due to advances in computerization, which offer greater scope for sophisticated techniques. These fall into three types of monitoring vibration, performance and wear debris. The last monitors particulate debris in a fluid such as lubricating oil, caused by the deterioration of a component. [Pg.885]

Repeated attempts to obtain the band at 1030 cm 1 in spectra of the respective solids of various compositions did not furnish the desired result. Nevertheless, the band was observed in IR transmission spectra of gaseous components that separated from molten K2NbF7 and were collected in a standard gas phase cell with Csl windows appropriate for IR measurements. Fig. 85 presents the structure of the band and exact wave numbers of its components. Storage of the gas in the cell for several days resulted in a yellow deposit on the windows due to oxidation and subsequent separation of iodine. Analysis of available reported data [364 - 367] enables to assign the band observed at -1030 cm 1 to vibrations of OF radicals. It should be emphasized that a single mode was observed for OF in the argon matrix while in the case of nitrogen, two modes were indicated [367]. [Pg.190]

Whereas the quasi-chemical theory has been eminently successful in describing the broad outlines, and even some of the details, of the order-disorder phenomenon in metallic solid solutions, several of its assumptions have been shown to be invalid. The manner of its failure, as well as the failure of the average-potential model to describe metallic solutions, indicates that metal atom interactions change radically in going from the pure state to the solution state. It is clear that little further progress may be expected in the formulation of statistical models for metallic solutions until the electronic interactions between solute and solvent species are better understood. In the area of solvent-solute interactions, the elastic model is unfruitful. Better understanding also is needed of the vibrational characteristics of metallic solutions, with respect to the changes in harmonic force constants and those in the anharmonicity of the vibrations. [Pg.143]

Then the O atoms, which are reactive radicals with two unpaired electrons, react with the more abundant 02 molecules to form ozone. The ozone molecules are created in such a high-energy state that their vibrational motions would quickly tear them apart unless another molecule, such as 02 or N2, collides with them first. The other molecule, indicated as M, carries off some of the energy ... [Pg.688]

The mechanism shown in Scheme 6 is, for the most part, consistent with points (1) to (9). Thus, initially formed is a o--complex that is stable only at low temperatures. Upon matrix warm-up, a caged, radical pair forms and, if the R portion possesses a sufficient excess of vibrational energy, decomposition processes may occur. The radicals combine to form RPdX, which may, or may not, be isolated. [Pg.159]

Ideally, it would be desirable to determine many parameters in order to characterize and mechanistically define these unusual reactions. This has been an important objective that has often been considered in the course of these studies. It would be helpful to know, as a function of such parameters of the plasma as the radio-frequency power, pressure, and rate of admission of reactants, (2) the identity and concentrations of all species, including trifluoromethyl radicals, (2) the electronic states of each species, (3) the vibrational states of each species, and (4) both the rotational states of each species and the average, translational energies of, at least, the trifluoromethyl radicals. [Pg.190]


See other pages where Vibrational radicals is mentioned: [Pg.80]    [Pg.2073]    [Pg.2421]    [Pg.2795]    [Pg.264]    [Pg.358]    [Pg.361]    [Pg.525]    [Pg.1286]    [Pg.276]    [Pg.556]    [Pg.25]    [Pg.161]    [Pg.132]    [Pg.293]    [Pg.104]    [Pg.117]    [Pg.310]    [Pg.313]    [Pg.158]    [Pg.39]    [Pg.44]    [Pg.71]    [Pg.400]    [Pg.1020]    [Pg.670]    [Pg.995]    [Pg.893]    [Pg.1054]    [Pg.59]    [Pg.298]    [Pg.159]    [Pg.198]    [Pg.317]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



Case Studies Vibrationally Averaged Properties of Vinyl and Methyl Radicals

Free radicals vibrational frequencies

Methyl radicals, vibrationally averaged

© 2024 chempedia.info