Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vegetable oils, compounds

Green coloration, present in many vegetable oils, poses a particular problem in oil extracted from immature or damaged soybeans. Chlorophyll is the compound responsible for this defect. StmcturaHy, chlorophyll is composed of a porphyrin ring system, in which magnesium is the central metal atom, and a phytol side chain which imparts a hydrophobic character to the stmcture. Conventional bleaching clays are not as effective for removal of chlorophylls as for red pigments, and specialized acid-activated adsorbents or carbon are required. [Pg.124]

To improve processing and to plasticize the mbber compound, numerous processing agents have been used over the years, eg, petroleum and ester plasticizers, resins and tars, Hquid mbber peptizers, peptizers, fatty acids and derivatives from vegetable oils, and polyethylene and hydrocarbon waxes. [Pg.245]

The mechanisms for the reaction of sulfur with alkanes and unsaturated compounds are highly speculative, being strongly influenced by the specific stmcture of the substrate and by the conditions (particularly temperature) of reaction. Alkane (4), olefin (5), animal fat (6), and vegetable oil (7) sulfurization have been extensively studied because these reactions are models for vulcanization. Moreover, the products are used as lubricant additives. [Pg.206]

Zirconium tetrafluoride [7783-64-4] is used in some fluoride-based glasses. These glasses are the first chemically and mechanically stable bulk glasses to have continuous high transparency from the near uv to the mid-k (0.3—6 -lm) (117—118). Zirconium oxide and tetrachloride have use as catalysts (119), and zirconium sulfate is used in preparing a nickel catalyst for the hydrogenation of vegetable oil. Zirconium 2-ethyIhexanoate [22464-99-9] is used with cobalt driers to replace lead compounds as driers in oil-based and alkyd paints (see Driers and metallic soaps). [Pg.433]

The initial use was as a blow moulded vessel for vegetable oil candles. However, because of its biodegradability it is of interest for applications where paper and plastics materials are used together and which can, after use, be sent into a standard paper recycling process. Instances include blister packaging (the compound is transparent up to 3 mm in thickness), envelopes with transparent windows and clothes point-of-sale packaging. [Pg.627]

Nickel, Ni, is also used in alloys. It is a hard, silver-white metal used mainly for the production of stainless steel and for alloying with copper to produce cupronickels, the alloys used for nickel coins (which are about 25% Ni and 75% Cu). Nickel is also used in nicad batteries and as a catalyst, especially for the addition of hydrogen to organic compounds, as in the hydrogenation of vegetable oils (Section 18.6). [Pg.784]

The reduction of the stable 1,1 -diphenyl-2-picrylhydrazyl radical (DPPH) has been used to assess the efficiency of antioxidants in beverages (Larrauri et al, 1999 Porto et al, 2000), vegetable oils (Espin et al, 2000) and of pure phenolic compounds (Madsen et al, 2000), reaction [16.17] ... [Pg.332]

Traditionally, dried or powdered plant material is used and extracts can be obtained by mixing the material with food-grade solvents like dichloromethane or acetone followed by washing, concentration, and solvent removal. The result is an oily product that may contain variable amounts of pheophytins and other chlorophyll degradation compounds usually accompanied by lipid-soluble substances like carotenoids (mainly lutein), carotenes, fats, waxes, and phospholipids, depending on the raw material and extraction techniques employed. This product is usually marketed as pheophytin after standardization with vegetable oils. [Pg.204]

Dunaliella natural P-carotene is distributed widely in many different markets under three categories p-carotene extracts, Dunaliella powder for human use, dried Dunaliella for feed use. Extracted purified P-carotene is sold mostly in vegetable oil in bulk concentrations from 1 to 20% to color various food products and for personal use in soft gels usually containing 5 mg P-carotene per gel. Purified natural p-carotene is generally accompanied by the other Dunaliella carotenoids, primarily lutein, neoxanthin, zeaxan-thin, violaxanthin, cryptoxanthin, and a-carotene for a total of approximately 15% of carotene concentration. This compound is marketed as carotenoids mix. ... [Pg.405]

Volatile organic compounds in drinking water, beverages, vegetable oils, mineral oils, etc. [Pg.925]

When oils are used as vehicles in ophthalmic fluids, they must be of the highest purity. Vegetable oils such as olive oil, castor oil, and sesame oil have been used for extemporaneous compounding. These oils are subject to rancidity and, therefore, must be used carefully. Some commercial oils, such as peanut oil, contain stabilizers that could be irritating. The purest grade of oil, such as that used for parenteral products, would be advisable for ophthalmics. [Pg.460]

In Japan, the standard Eco Mark Product Category No. 102 Printing Ink Version 2.6 [26] sets on a voluntary basis standards for an environmentally friendly composition of printing inks. Since introduction of this standard in 1997, more than 90% of all offset inks in Japan were reformulated to inks free from aromatic compounds ( white oil ). To fulfil the above-mentioned standard, the inks should be based on vegetable oils. They should not contain more than 1 vol.% of aromatic hydrocarbons ( white oils ). Additionally, sheet-fed offset inks should not contain more than 30% of crude oil-based solvents and not more than 3% VOC. Web offset inks should contain no more than 45% crude oil solvents (which seems not really to be a progress in comparison to typical standard inks). By the way, it is expected from vegetable oil-based inks that the print products are as deinkable as conventional mineral oil-based offset inks. [Pg.410]

Nevertheless, there are some vegetable oils that have a very specific composition. For example, castor oil consists of large amounts (83 89%) of 12-hydroxy-(Z)-9-octadecenoic acid (ricinoleic acid) which is not found in other natural lipids [21]. Ricinoleic acid produces a very characteristic oxidation product, 9,12-dihydroxyoctadecanoic acid [43], and both of these compounds can be considered as specific biomarkers for castor oil and have been used to assess its presence in ceramic lamps [43] and mummification balms [23]. [Pg.8]

Some methods measure more compounds than other methods because they employ more rigorous extraction techniques or more efficient solvents for the extraction procedure(s). Other methods are subject to interferences from naturally occurring materials such as animal and vegetable oils, peat moss, or humic material, which may result in artificially high reported concentrations of the total petroleum hydrocarbons. Some methods use cleanup steps to minimize the effect of nonpetroleum hydrocarbons, with variable success. Ultimately, many of the methods are limited by the extraction efficiency and the detection limits of the instrumentation used for measurement. [Pg.190]


See other pages where Vegetable oils, compounds is mentioned: [Pg.365]    [Pg.365]    [Pg.243]    [Pg.124]    [Pg.124]    [Pg.470]    [Pg.250]    [Pg.28]    [Pg.102]    [Pg.511]    [Pg.514]    [Pg.256]    [Pg.534]    [Pg.85]    [Pg.153]    [Pg.524]    [Pg.217]    [Pg.212]    [Pg.87]    [Pg.449]    [Pg.1301]    [Pg.407]    [Pg.173]    [Pg.71]    [Pg.60]    [Pg.332]    [Pg.144]    [Pg.257]    [Pg.101]    [Pg.517]    [Pg.84]    [Pg.120]    [Pg.90]    [Pg.257]    [Pg.408]    [Pg.85]    [Pg.71]    [Pg.197]   


SEARCH



Vegetable oils phenolic compounds

© 2024 chempedia.info