Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids vapour pressure

The ability of small molecular fluids under nearcritical conditions to dissolve low-vapour-pressure solid materials was first discovered by Hannay et al. (1). Scheffer and coworkers (2) investigated extensively the solubility of naphthalene in near- and supercritical ethylene. Since then many researchers have started to study the possibilities of supercritical solvents and within the past two decades several research institutes have Investigated and developed the principles and technology of supercritical fluid separations. Commercial application can be found in areas as diverse as spice extraction, monomer purification, coal extraction, nicotine and caffeine extraction, fractionation of (co-) polymers or the extraction of oils from all kinds of natural products. Reviews of most of this work are... [Pg.91]

Melting Point (°C) Boiling Point (°C) Vapour Pressure Solid/Liquid Density (g/cm )... [Pg.260]

Figure A2.5.1. Schematic phase diagram (pressure p versus temperature 7) for a typical one-component substance. The full lines mark the transitions from one phase to another (g, gas liquid s, solid). The liquid-gas line (the vapour pressure curve) ends at a critical point (c). The dotted line is a constant pressure line. The dashed lines represent metastable extensions of the stable phases. Figure A2.5.1. Schematic phase diagram (pressure p versus temperature 7) for a typical one-component substance. The full lines mark the transitions from one phase to another (g, gas liquid s, solid). The liquid-gas line (the vapour pressure curve) ends at a critical point (c). The dotted line is a constant pressure line. The dashed lines represent metastable extensions of the stable phases.
Accurate enthalpies of solid-solid transitions and solid-liquid transitions (fiision) are usually detennined in an adiabatic heat capacity calorimeter. Measurements of lower precision can be made with a differential scaiming calorimeter (see later). Enthalpies of vaporization are usually detennined by the measurement of the amount of energy required to vaporize a known mass of sample. The various measurement methods have been critically reviewed by Majer and Svoboda [9]. The actual teclmique used depends on the vapour pressure of the material. Methods based on... [Pg.1910]

Iodine is a dark-coloured solid which has a glittering crystalline appearance. It is easily sublimed to form a bluish vapour in vacuo. but in air, the vapour is brownish-violet. Since it has a small vapour pressure at ordinary temperatures, iodine slowly sublimes if left in an open vessel for the same reason, iodine is best weighed in a stoppered bottle containing some potassium iodide solution, in which the iodine dissolves to form potassium tri-iodide. The vapour of iodine is composed of I2 molecules up to about 1000 K above this temperature, dissociation into iodine atoms becomes appreciable. [Pg.320]

The reason for the constancy and sharpness of the melting j)oint of a pure crystalline solid can be appreciated upon reference to Fig. 7,10, 1, in which (a) is the vapour pressure curve of the solid and (6) that of the liquid form of the substance. Let us imagine a vessel, maintained at constant temperature, completely filled with a mixture of the above liquid and solid. The molecules of the solid can only pass into the liquid and the molecules of the liquid only into the solid. We may visualise two competitive processes taking place (i) the solid attempting to evaporate but it can only pass into the liquid, and (ii) the liquid attempting to distil but it can only pass into the solid. If process (i) is faster, the solid will melt, whereas if process (ii) proceeds with greater speed the... [Pg.22]

It is a well-known fact that substances like water and acetic acid can be cooled below the freezing point in this condition they are said to be supercooled (compare supersaturated solution). Such supercooled substances have vapour pressures which change in a normal manner with temperature the vapour pressure curve is represented by the dotted line ML —a continuation of ML. The curve ML lies above the vapour pressure curve of the solid and it is apparent that the vapour pressure of the supersaturated liquid is greater than that of the solid. The supercooled liquid is in a condition of metastabUity. As soon as crystallisation sets in, the temperature rises to the true freezing or melting point. It will be observed that no dotted continuation of the vapour pressure curve of the solid is shown this would mean a suspended transformation in the change from the solid to the liquid state. Such a change has not been observed nor is it theoretically possible. [Pg.23]

The naphthalene wUl dissolve in the liquid a-naphthol and, according to Raoult s law, the vapour pressure of the latter will be reduced. Hence a-naphthol will pass preferentially into the liquid phase and, if the external temperature is maintained at 95 5°, the ultimate result will be the complete melting of the solid a-naphthol since melting requires heat and no heat is imparted to the system, the temperature will fall. [Pg.23]

To understand the conditions which control sublimation, it is necessary to study the solid - liquid - vapour equilibria. In Fig. 1,19, 1 (compare Fig. 1,10, 1) the curve T IF is the vapour pressure curve of the liquid (i.e., it represents the conditions of equilibrium, temperature and pressure, for a system of liquid and vapour), and TS is the vapour pressure curve of the solid (i.e., the conditions under which the vapour and solid are in equili-hrium). The two curves intersect at T at this point, known as the triple point, solid, liquid and vapour coexist. The curve TV represents the... [Pg.37]

The normal melting point of a substance is the temperature at which solid and hquid are in equilibrium at atmospheric pressure. At the triple point, the pressure is the equilibrium vapour pressure of the system (solid liquid - vapour) and the temperature differs from the melting point. The difference is, however, quite small—usually only a fraction of a degree—since the line TV departs only slightly from the vertical within reasonable ranges of pressure. [Pg.38]

If the triple point pressure of a solid is below one atmosphere, it will melt if the heating is conducted rapidly so that the vajiour pressure can exceed that at the triple point. If camphor is heated in a closed space, the vapour pressure increases and when the value of 360 mm. is reached, the solid will melt further heating results in an increase in the vapour pressure and the camphor will boil when the vapour pressure is 760 mm. [Pg.38]

Some simple apparatus, suitable for high vacuum distillation, are collected in Figs. 11, 26, 1-4. Fig. 11, 26, 1 represents an apparatus, which is particularly well adapted for solids the ground glass joint must be lubricated with a grease of negligible vapour pressure. Hickman s vacuum still is shown in Fig. 11, 26, 2 it is about 60 mm. in diameter. [Pg.121]

As already mentioned, the choice of the supercooled liquid as reference state has been questioned by some workers who use the saturation vapour pressure of the solid, which is measured at the working temperature in the course of the isotherm determination. The effect of this alternative choice of p° on the value of a for argon adsorbed on a number of oxide samples, covering a wide range of surface areas, is clear from Table 2.11 the average value of is seen to be somewhat higher, i.e. 18 OA. ... [Pg.76]

The working temperature, 77 K, is well below the triple point of krypton, 116 K, but if the solid is taken as the reference state the isotherm shows an unusually sharp upward turn at the high-pressure end. The usual practice, following Beebe, is therefore to take p° as the saturation vapour pressure of the supereooled liquid (p° = 2-49 Torr at 77-35 K and 27-5 Torr at 90-2 K). [Pg.77]

There is a qualitative distinction between these two types of mass transfer. In the case of vapour phase transport, matter is subtracted from the exposed faces of the particles via dre gas phase at a rate determined by the vapour pressure of the solid, and deposited in the necks. In solid state sintering atoms are removed from the surface and the interior of the particles via the various diffusion vacancy-exchange mechanisms, and the centre-to-cenU e distance of two particles undergoing sintering decreases with time. [Pg.204]

If the pump is a filter pump off a high-pressure water supply, its performance will be limited by the temperature of the water because the vapour pressure of water at 10°, 15°, 20° and 25° is 9.2, 12.8, 17.5 and 23.8 mm Hg respectively. The pressure can be measured with an ordinary manometer. For vacuums in the range lO" mm Hg to 10 mm Hg, rotary mechanical pumps (oil pumps) are used and the pressure can be measured with a Vacustat McLeod type gauge. If still higher vacuums are required, for example for high vacuum sublimations, a mercury diffusion pump is suitable. Such a pump can provide a vacuum up to 10" mm Hg. For better efficiencies, the pump can be backed up by a mechanical pump. In all cases, the mercury pump is connected to the distillation apparatus through several traps to remove mercury vapours. These traps may operate by chemical action, for example the use of sodium hydroxide pellets to react with acids, or by condensation, in which case empty tubes cooled in solid carbon dioxide-ethanol or liquid nitrogen (contained in wide-mouthed Dewar flasks) are used. [Pg.12]

TABLE 17. Salt VAPOUR PRESSURES (mm Hg) OF SATURATED AQUEOUS SOLUTIONS IN EQUILIBRIUM WITH SOLID SALTS Temperature % Humidity 10" 15" 20" 25" 30" at 20" ... [Pg.42]


See other pages where Solids vapour pressure is mentioned: [Pg.115]    [Pg.170]    [Pg.375]    [Pg.418]    [Pg.98]    [Pg.353]    [Pg.610]    [Pg.624]    [Pg.754]    [Pg.2804]    [Pg.22]    [Pg.23]    [Pg.38]    [Pg.39]    [Pg.631]    [Pg.44]    [Pg.73]    [Pg.74]    [Pg.79]    [Pg.111]    [Pg.112]    [Pg.100]    [Pg.100]    [Pg.103]    [Pg.158]    [Pg.342]    [Pg.361]    [Pg.12]    [Pg.413]    [Pg.489]    [Pg.256]    [Pg.341]    [Pg.117]   
See also in sourсe #XX -- [ Pg.608 ]




SEARCH



Pressure solids

Vapour pressure

© 2024 chempedia.info