Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vaporizers fluids vaporized

Correlation and compilation of vapor-pressure data for pure fluids. Normal and low pressure region. [Pg.7]

Two generally accepted models for the vapor phase were discussed in Chapter 3 and one particular model for the liquid phase (UNIQUAC) was discussed in Chapter 4. Unfortunately, these, and all other presently available models, are only approximate when used to calculate equilibrium properties of dense fluid mixtures. Therefore, any such model must contain a number of adjustable parameters, which can only be obtained from experimental measurements. The predictions of the model may be sensitive to the values selected for model parameters, and the data available may contain significant measurement errors. Thus, it is of major importance that serious consideration be given to the proper treatment of experimental measurements for mixtures to obtain the most appropriate values for parameters in models such as UNIQUAC. [Pg.96]

As discussed in Chapter 3, the virial equation is suitable for describing vapor-phase nonidealities of nonassociating (or weakly associating) fluids at moderate densities. Equation (1) gives the second virial coefficient which is used directly in Equation (3-lOb) to calculate the fugacity coefficients. [Pg.133]

Correlations for standard-state fugacities at 2ero pressure, for the temperature range 200° to 600°K, were generated for pure fluids using the best available vapor-pressure data. [Pg.138]

The correlations were generated by first choosing from the literature the best sets of vapor-pressure data for each fluid. [Pg.138]

As pointed out previously, the separation of homogeneous fluid mixtures requires the creation or addition of another phase. The most common method is by repeated vaporization and condensation— distillation. The three principal advantages of distillation are... [Pg.74]

Low temperature. Low-temperature process (below 0°C) can contain large amounts of fluids kept in the liquid state by pressure and/or low temperature. If for any reason it is not possible to keep them under pressure or keep them cold, then the liquids will begin to vaporize. If this happens, impurities in the fluids are liable to... [Pg.267]

Various heat pumping schemes have been proposed as methods for saving energy in distillation. Of these schemes, use of the column overhead vapor as the heat pumping fluid is usually the most economically attractive. This is the vapor recompression scheme shown in outline in Fig. 14.6. [Pg.346]

Each fluid is described by a BWR equation of state whose coefficients are adjusted to obtain simultaneously the vapor pressure, enthalpies of liquid and gas as well as the compressibilities. The compressibility z of any fluid is calculated using the equation below ... [Pg.119]

When the fluids being treated contain water, the equilibria most often involve three phases (liquid-liquid-vapor). [Pg.147]

In Fig. III-7 we show a molecular dynamics computation for the density profile and pressure difference P - p across the interface of an argonlike system [66] (see also Refs. 67, 68 and citations therein). Similar calculations have been made of 5 in Eq. III-20 [69, 70]. Monte Carlo calculations of the density profile of the vapor-liquid interface of magnesium how stratification penetrating about three atomic diameters into the liquid [71]. Experimental measurement of the transverse structure of the vapor-liquid interface of mercury and gallium showed structures that were indistinguishable from that of the bulk fluids [72, 73]. [Pg.63]

In many applications in mass spectrometry (MS), the sample to be analyzed is present as a solution in a solvent, such as methanol or acetonitrile, or an aqueous one, as with body fluids. The solution may be an effluent from a liquid chromatography (LC) column. In any case, a solution flows into the front end of a mass spectrometer, but before it can provide a mass spectrum, the bulk of the solvent must be removed without losing the sample (solute). If the solvent is not removed, then its vaporization as it enters the ion source would produce a large increase in pressure and stop the spectrometer from working. At the same time that the solvent is removed, the dissolved sample must be retained so that its mass spectrum can be measured. There are several means of effecting this differentiation between carrier solvent and the solute of interest, and thermospray is just one of them. Plasmaspray is a variant of thermospray in which the basic method of solvent removal is the same, but the number of ions obtained is enhanced (see below). [Pg.71]

SO2 adsorbed in activated carbon fluid bed. SO2, H2O, and SO2 react at 65—150°C forming H2SO4. In next vessel, H2SO4 +3H2S at 150°C gives 4S + 4H2O. Bed temperature is increased to vaporize some S. Remaining S reacts with H2 to H2S. [Pg.390]

Physical requirements of fluid fertilizers include freedom from sediments, suitably low viscosity, low vapor pressure, and noncorrosivity with regard to available handling equipment. Using anhydrous ammonia, the chief physical concerns, are in the safety of handling under pressure and the minimizing of vapor loss during injection into the sod. [Pg.215]

Most A1F. and cryoHte producers have their own HF production faciUties. HF vapor is reacted with alumina trihydrate to form A1F. in a fluid-bed reactor. HF is reacted with sodium hydroxide to form sodium fluoride, which is then used to produce cryoHte. Producers who manufacture these products solely for use in the aluminum industry do not generally install Hquid HF storage and handling faciHties, and do not participate in the merchant HF market. [Pg.200]

Furthermore, 60—100 L (14—24 gal) oil, having sulfur content below 0.4 wt %, could be recovered per metric ton coal from pyrolysis at 427—517°C. The recovered oil was suitable as low sulfur fuel. Figure 15 is a flow sheet of the Rocky Flats pilot plant. Coal is fed from hoppers to a dilute-phase, fluid-bed preheater and transported to a pyrolysis dmm, where it is contacted by hot ceramic balls. Pyrolysis dmm effluent is passed over a trommel screen that permits char product to fall through. Product char is thereafter cooled and sent to storage. The ceramic balls are recycled and pyrolysis vapors are condensed and fractionated. [Pg.94]

Fig. 6. In a binary electricity generation plant, the hydrothermal water from the weU, A, is passed through a heat exchanger, B, where its thermal energy is transferred to a second, more volatile working fluid. The second fluid is vaporized and deflvered to a turbine, D. After exiting the turbine the spent working fluid is cooled and recondensed in another heat exchanger, E, using water or air as the coolant, F. It is then fed back to the primary heat exchanger to repeat the cycle. Waste hydrothermal fluid, C, can be reinjected into the producing field. Fig. 6. In a binary electricity generation plant, the hydrothermal water from the weU, A, is passed through a heat exchanger, B, where its thermal energy is transferred to a second, more volatile working fluid. The second fluid is vaporized and deflvered to a turbine, D. After exiting the turbine the spent working fluid is cooled and recondensed in another heat exchanger, E, using water or air as the coolant, F. It is then fed back to the primary heat exchanger to repeat the cycle. Waste hydrothermal fluid, C, can be reinjected into the producing field.
Fluid Chemical composition Temperature range, °C Min Max Viscosity, mPa-s(= cP) Vapor pressure, kPA Pour point, °C Flash point, °C Fire point, °C ait/ °C... [Pg.503]


See other pages where Vaporizers fluids vaporized is mentioned: [Pg.87]    [Pg.204]    [Pg.63]    [Pg.317]    [Pg.245]    [Pg.362]    [Pg.466]    [Pg.500]    [Pg.354]    [Pg.610]    [Pg.92]    [Pg.55]    [Pg.251]    [Pg.255]    [Pg.230]    [Pg.241]    [Pg.271]    [Pg.284]    [Pg.296]    [Pg.296]    [Pg.299]    [Pg.400]    [Pg.429]    [Pg.494]    [Pg.266]    [Pg.266]    [Pg.313]    [Pg.496]    [Pg.502]    [Pg.502]    [Pg.502]    [Pg.502]    [Pg.503]   
See also in sourсe #XX -- [ Pg.15 , Pg.16 ]




SEARCH



Cryogenic fluids vapor pressure

Fluid phase equilibrium vapor-liquid equilibria

Fluid vapor-liquid equilibrium calculation

Ionic fluid criticality liquid-vapor transition

Metallic fluids, criticality, liquid-vapor

Pump fluid backstreaming and its suppression (Vapor barriers, baffles)

The Liquid-Vapor Critical Point Data of Fluid Metals and Semiconductors

Vapor Pressure of Fluids at Temperatures

Vapor Pressure of Fluids at Temperatures below

Vaporizers indirect fluid heater

Vaporizers lethal fluids

© 2024 chempedia.info