Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor separation, condensation

As pointed out previously, the separation of homogeneous fluid mixtures requires the creation or addition of another phase. The most common method is by repeated vaporization and condensation— distillation. The three principal advantages of distillation are... [Pg.74]

When a mixture in a reactor effluent contains components with a wide range of volatilities, then a partial condensation from the vapor phase or a partial vaporization from the liquid phase followed by a simple phase split often can produce a good separation. If the vapor from such a phase split is difficult to condense, then further separation needs to be carried out in a vapor separation unit such as a membrane. [Pg.126]

Evaporation processes usually separate a single component (typically water) from a nonvolatile material. As such, it is good enough in most cases to assume that the vaporization and condensation processes take place at constant temperatures. [Pg.355]

Vapor-Liquid Separation This design problem may be important for a number of reasons. The most important is usually prevention of entrainment because of value or product lost, pollution, contamination of the condensed vapor, or fouling or corrosion of the surfaces on which the vapor is condensed. Vapor-liquid separation in the vapor head may also oe important when spray forms deposits on the w ls, when vortices increase head requirements of circulating pumps, and when shoiT circuiting allows vapor or unflashed liquid to be carried back to the circulating pump ana heating element. [Pg.1137]

Consider azeotropic distillation to dehydrate ethanol with benzene. Initial steady-state conditions are as shown in Fig. 13-108. The overhead vapor is condensed and cooled to 298 K to form two hquid phases that are separated in the decanter. The organic-rich phase is returned to the top tray as reflux together with a portion of the water-rich phase and makeup benzene. The other portion of the water-rich phase is sent to a stripper to recover organic compounds. Ordinarily, vapor from that stripper is condensed and recycled to the decanter, but that coupling is ignored here. [Pg.1343]

The design of a plate tower for gas-absorption or gas-stripping operations involves many of the same principles employed in distillation calculations, such as the determination of the number of theoretical plates needed to achieve a specified composition change (see Sec. 13). Distillation differs from gas absorption in that it involves the separation of components based on the distribution of the various substances between a gas phase and a hquid phase when all the components are present in Doth phases. In distillation, the new phase is generated From the original feed mixture by vaporization or condensation of the volatile components, and the separation is achieved by introducing reflux to the top of the tower. [Pg.1357]

Rectification is the separation of the constituents of a hquid mixture by successive distihations (partial vaporizations and condensations) and is obtained via the use of an integral or differential process. Separations into effectively pure components may be obtained through this procedure. [Pg.1369]

Condensation Equipment There are two basic types of condensers used for control contact and surface. In contact condensers, the gaseous stream is brought into direct contact with a cooling medium so that the vapors condense and mix with the coolant (see Fig. 25-15). The more widely used system, however, is the surface condenser (or heat exchanger), in which the vapor and the cooling medium are separated by a wall (see Fig. 25-16). Since high removal efficiencies cannot be obtained with low-condensable vapor concentrations, condensers are typically used for pretreatment prior to some other more efficient control device such as an incinerator, absorber, or adsorber. [Pg.2191]

An innovation is a direct-contact condenser mounted on the vapor body. A short piece of vertical pipe connects the vapor body with the condenser to minimize piping and pressure drop. This design also eliminates structural steel for support of a separate condenser. For cooling tower applications, the hotwell is elevated to permit gravity flow of water from the hotwell to the top of the cooling tower, thus eliminating the need for a pump. [Pg.97]

Wet Flare and Dry Flare Sometimes relatively hot vapors carrying condensates may be separated from the dry cold vapors. They do not run as separate headers but either low-pressure or high-pressure flare headers may be associated with any one of them. Thus a wet flare header may be, in fact, the low-pressure header, and the dry flare header maybe the high-pressure flare, or vica-versa. [Pg.323]

In general, refining consists of two major phases of production. The first phase of production acts on the crude oil once as soon as it enters the plant. It involves distilling or separating of the crude oil into various fractional components. Distillation involves the following procedures heating, vaporization, fractionation, condensation, and cooling of feedstock. [Pg.987]

The vacuum extraction process involves using vapor extraction wells alone or in combination with air injection wells. Vacuum blowers are used to create the movement of air through the soil. The air flow strips the VOCs from the soil and carries them to the surface. Figure 18.14 shows the flow diagram for such a process. During extraction, water may also be extracted along with vapor. The mixture should be sent to a liquid-vapor separator. The separation process results in both liquid and vapor residuals that require further treatment. Carbon adsorption is used to treat the vapor and water streams, leaving clean water and air for release, and spent GAC for reuse or disposal. Air emissions from the system are typically controlled by adsorption of the volatiles onto activated carbon, by thermal destruction, or by condensation. [Pg.735]

On the other hand, rather than partially vaporize a liquid, the starting point could have been a homogeneous mixture of components in the vapor phase and the vapor partially condensed. There would still have been a separation, as the liquid that was formed would be richer in the less-volatile components, while the vapor would have become depleted in the less-volatile components. Again, the distribution of components between the vapor and liquid is dictated by vapor-liquid equilibrium considerations if the system is allowed to come to equilibrium. [Pg.157]

Next, we need to calculate the amount of each component in the vapor phase. At room temperature, the vapor separates into a condensate that is mostly water and a gas phase that is mostly CO2. Table 23.2 provides the composition of each. The mole number of each component (H2O, CO2, and H2S) in the condensate, expressed per kg H2O in the liquid, is derived by multiplying the concentration (g kg-1) by the vapor fraction Xvap and dividing by the component s mole weight. [Pg.352]

Fig. 2.49.2. Schema of a freeze drying production plant with approx. 20 m2 shelf area. The chamber and condenser are in the same vacuum chamber, separated by a wall in which the valve is built, providing the shortest possible path for the water vapor. The condenser and the brine heat exchanger are cooled by LN2. The condenser surface is made from plates (Fig. 2.49.3), its temperature can be controlled between -110 °C and -60 °C. The shelves can be controlled by the circulated brine between -70 °C and +50 °C. The trays with product can be automatically loaded and unloaded from a trolley. The shelves can be pressed together in one block and the trays are loaded to the shelves by pushing one shelf after another in front of the trolley. Fig. 2.49.2. Schema of a freeze drying production plant with approx. 20 m2 shelf area. The chamber and condenser are in the same vacuum chamber, separated by a wall in which the valve is built, providing the shortest possible path for the water vapor. The condenser and the brine heat exchanger are cooled by LN2. The condenser surface is made from plates (Fig. 2.49.3), its temperature can be controlled between -110 °C and -60 °C. The shelves can be controlled by the circulated brine between -70 °C and +50 °C. The trays with product can be automatically loaded and unloaded from a trolley. The shelves can be pressed together in one block and the trays are loaded to the shelves by pushing one shelf after another in front of the trolley.
Quench pool/catch tank This type of system, as shown in Fig. 23-55, is used to condense, cool, react with, and/or collect a mixture of liquid and vapors discharging from a relief device by passing them through a pool of liquid in a vessel. Feed vapor and liquid (if present) are sparged into the pool of cool liquid, where the vapors are condensed and the liquid is cooled. If the feed materials are miscible with the pool liquid, they mix with and are diluted by the pool liquid if not, the condensate, feed liquid, and pool liquid separate into layers after the emergency relief event is over. The condensed vapors, feed liquid, and quench liquid are contained in the vessel until they are sent to final disposal. [Pg.83]

This separation or purification of liquids by vaporization and condensation is a very important step in one of man s oldest professions. The word still lives on as a tribute to the importance of organic chemistry. The important points are... [Pg.152]

The toxicity and volume of some deoiled and dewatered sludge can be reduced further through thermal treatment. Thermal sludge treatment units use heat to vaporize the water and volatile components in the feed and leave behind a dry solid residne. The vapors are condensed for separation into hydrocarbon and water components. Noncondensable vapors are either flared or sent to the refinery amine nnit for treatment and nse as refinery fnel gas. [Pg.317]

Process designers sometimes like to use dephlegmators or partial condensers mounted directly in the top of the distillation column when the overhead product is taken off as a vapor. They arc particularly popular for corrosive, toxic, or hard-to-handle chemicals since they eliminate a. separate condenser shell, a reflux drum, and a reflux pump. Comment on the relative controllability of the two process systems sketched below. [Pg.239]


See other pages where Vapor separation, condensation is mentioned: [Pg.209]    [Pg.209]    [Pg.78]    [Pg.496]    [Pg.85]    [Pg.369]    [Pg.336]    [Pg.41]    [Pg.197]    [Pg.198]    [Pg.198]    [Pg.441]    [Pg.477]    [Pg.1086]    [Pg.1130]    [Pg.1147]    [Pg.202]    [Pg.1264]    [Pg.1265]    [Pg.337]    [Pg.983]    [Pg.251]    [Pg.151]    [Pg.304]    [Pg.273]    [Pg.142]    [Pg.55]    [Pg.375]    [Pg.311]    [Pg.57]   
See also in sourсe #XX -- [ Pg.14 , Pg.16 ]




SEARCH



Condensable vapors

Vapor condensation

Vapor condensers

Vapor condensing

Vapor separation

© 2024 chempedia.info