Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Used catalysts, analysis

Acid—Base Chemistry. Acetic acid dissociates in water, pK = 4.76 at 25°C. It is a mild acid which can be used for analysis of bases too weak to detect in water (26). It readily neutralizes the ordinary hydroxides of the alkaU metals and the alkaline earths to form the corresponding acetates. When the cmde material pyroligneous acid is neutralized with limestone or magnesia the commercial acetate of lime or acetate of magnesia is obtained (7). Acetic acid accepts protons only from the strongest acids such as nitric acid and sulfuric acid. Other acids exhibit very powerful, superacid properties in acetic acid solutions and are thus useful catalysts for esterifications of olefins and alcohols (27). Nitrations conducted in acetic acid solvent are effected because of the formation of the nitronium ion, NO Hexamethylenetetramine [100-97-0] may be nitrated in acetic acid solvent to yield the explosive cycl o trim ethyl en etrin itram in e [121 -82-4] also known as cyclonit or RDX. [Pg.66]

A useful device to have installed in a stirred autoclave is a liquid sampling tube by which liquid samples are withdrawn under pressure through a filter attached to the lower end of the tube. This device is especially useful for analysis of reaction progress and supplements information obtained from pressure-drop determinations. It is much easier to improve a less than satisfactory yield, if it can be determined what is going wrong and when. For academically orientated persons, a study of the rise and decline of various reaction products, as a function of reaction parameters and catalyst, can be a fertile source of useful publications. [Pg.20]

Special attention was paid to the detection of residual Cu-fl quantities accompanying the metallic Cu. The relative amounts of Cu+1 and Cu were determined by curve-fitting the Cu (LMM) spectra using the Physical Electronics Version 6 curve-fitting program. The catalyst showed reduction of Cu+2 Into a mixture of Cu+1 and Cu after reduction In H2 at 250 C for one hour (Figure 6) as evidenced by the two resolved peaks In the Cu (LMM) spectrum at 568.0 and 570.3 eV which are characteristic of Cu and Cu+1, respectively, and by the disappearance of the Cu+2 2p satellite structure. It could be shown that less than 2%, If any, of the total Cu could be present In the +1 oxidation state during methanol formation. However, when the catalyst was briefly exposed to air (1 minute), a few percent of Cu+1 readily formed (7). Thus, any kind of oxidation environment has to be avoided between methanol synthesis and catalyst analysis. Otherwise, appreciable amounts of Cu+1 will be detected. [Pg.21]

The reaction was monitored by UV/Vis spectroscopy by following the product formation at 420 mn. The initial rates were used for analysis of the catalyzed oxidation of 8 into 9 that follows Michaelis-Menten kinetics. Control experiments show a linear increase of the reaction rates with the catalyst concentration at constant substrate concentration. [Pg.476]

Applications Over the last 20 years, ICP-AES has become a widely used elemental analysis tool in many laboratories, which is also used to identify/quantify emulsifiers, contaminants, catalyst residues and other inorganic additives. Although ICP-AES is an accepted method for elemental analysis of lubricating oils (ASTM D 4951), often, unreliable results with errors of up to 20% were observed. It was found that viscosity modifier (VM) polymers interfere with aerosol formation, a critical step in the ICP analysis, thus affecting the sample delivery to the plasma torch [193]. Modifications... [Pg.622]

The reaction product was filtered to remove catalyst and analyzed in GC equipped with an HP5 (30 m X 0.32 mm X 0.25 pm) column. The temperature program used for analysis (31 °C - 35 min - 1 °C/min - 40 °C - 10 °C/min -120 °C) ensured complete separation of the cyclohexanol, cyclohexanone, and phenol peaks. The conversion and selectivity were calculated directly from the area of each peak. [Pg.197]

The Effectiveness Factor Analysis in Terms of Effective Diffusivities First-Order Reactions on Spherical Pellets. Useful expressions for catalyst effectiveness factors may also be developed in terms of the concept of effective diffusivities. This approach permits one to write an expression for the mass transfer within the pellet in terms of a form of Fick s first law based on the superficial cross-sectional area of a porous medium. We thereby circumvent the necessity of developing a detailed mathematical model of the pore geometry and size distribution. This subsection is devoted to an analysis of simultaneous mass transfer and chemical reaction in porous catalyst pellets in terms of the effective diffusivity. In order to use the analysis with confidence, the effective diffusivity should be determined experimentally, since it is difficult to obtain accurate estimates of this parameter on an a priori basis. [Pg.447]

Rytter et al. reported polymerizations with the dual precatalyst system 14/15 in presence of MAO [30]. Under ethylene-hexene copolymerization conditions, 14/MAO produced a polymer with 0.7 mol% hexene, while the 15/MAO gave a copolymer with ca. 5 mol% hexene. In the mixed catalyst system, the activity and comonomer incorporation were approximate averages of what would be expected for the two catalysts. Using crystallization analysis fractionation (CRYSTAF) and differential scanning calorimetry (DSC) analysis, it was concluded in a later paper by Rytter that the material was a blend containing no block copolymer [31],... [Pg.73]

H(hydrogen)-mordenite catalyst The crystallites were approximate parallelepipeds, the long dimension of which was assumed to be the pore length. Their analysis was based on straight, parallel pores in an isothermal crystallite (2 faces permeable). They measured (initial) rates of dehydration of methanol (A) to dimethyl ether in a differential reactor at 101 kPa using catalyst fractions of different sizes. Results (for two sizes) are given in the table below, together with... [Pg.221]

Ion-beam thinning is usually used for dense bulk specimens where particular regions must be analyzed. It can be useful in AEM for thinning the same single crystals used in surface analysis to make direct comparisons with results from AES, XPS, etc. Ion-beam thinning can also be useful in analysis of interfaces and defects within bulk metallic catalysts such as Pt and Pd and their alloys. [Pg.314]

A second use of this type of analysis has been presented by Stewart and Benkovic (1995). They showed that the observed rate accelerations for some 60 antibody-catalysed processes can be predicted from the ratio of equilibrium binding constants to the catalytic antibodies for the reaction substrate, Km, and for the TSA used to raise the antibody, Kt. In particular, this approach supports a rationalization of product selectivity shown by many antibody catalysts for disfavoured reactions (Section 6) and predictions of the extent of rate accelerations that may be ultimately achieved by abzymes. They also used the analysis to highlight some differences between mechanism of catalysis by enzymes and abzymes (Stewart and Benkovic, 1995). It is interesting to note that the data plotted (Fig. 17) show a high degree of scatter with a correlation coefficient for the linear fit of only 0.6 and with a slope of 0.46, very different from the theoretical slope of unity. Perhaps of greatest significance are the... [Pg.280]

The distillation fractions were also analysed for their caibon and hydrogen contents using a Leco CHN Determinator which was also used for similar analysis of die used catalysts. The hydrocracked liquid and the used catalysts were analysed for their sulphur contents using a Leco Suli iur Determinator. Some specific surface area analysis by nitrogen adsorption was carried out on the used catalysts using a Micromeritics instrument... [Pg.227]

Sulphur analysis of the liquids and analyses of the used catalysts revealed the same type of trends as are expounded fortiie experiments at 400 C. Therefore, for all of the repeat contact experiments, irrespective of catalyst or experimental condition, constant catalyst activity was achieved after a single contact so that results from single contacts in autoclaves of the design used in this investigation would be representative of steady state liquefaction conditions, enabling the autoclaves to be used for the rapid accumulation of liquefaction data. [Pg.231]

Urea-formaldehyde resins are generally prepared by condensation in aqueous basic medium. Depending on the intended application, a 50-100% excess of formaldehyde is used. All bases are suitable as catalysts provided they are partially soluble in water. The most commonly used catalysts are the alkali hydroxides. The pH value of the alkaline solution should not exceed 8-9, on account of the possible Cannizzaro reaction of formaldehyde. Since the alkalinity of the solution drops in the course of the reaction, it is necessary either to use a buffer solution or to keep the pH constant by repeated additions of aqueous alkali hydroxide. Under these conditions the reaction time is about 10-20 min at 50-60 C. The course of the condensation can be monitored by titration of the unused formaldehyde with sodium hydrogen sulfite or hydroxylamine hydrochloride. These determinations must, however, be carried out quickly and at as low temperature as possible (10-15 °C), otherwise elimination of formaldehyde from the hydroxymethyl compounds already formed can falsify the analysis. The isolation of the soluble condensation products is not possible without special precautions, on account of the facile back-reaction it can be done by pumping off the water in vacuum below 60 °C imder weakly alkaline conditions, or better by careful freeze-drying. However, the further condensation to crosslinked products is nearly always performed with the original aqueous solution. [Pg.300]

It is imperative to monitor the details of chemical reactions at the molecular level, which operando data can contribute to immensely through the use of spectroscopy. Spectroscopic techniques have been used in the past mostly to characterize fresh or used catalysts, obtaining structural information relating to the bulk and surface of the solids. In addition, on-line gas analysis of... [Pg.197]

The fresh and spent catalysts were characterized with the physisorption/chemisorption instrument Sorptometer 1900 (Carlo Erba instruments) in order to detect loss of surface area and pore volume. The specific surface area was calculated based on Dubinin-Radushkevich equation. Furthermore thermogravimetric analysis (TGA) of the fresh and used catalysts were performed with a Mettler Toledo TGA/SDTA 851e instrument in synthetic air. The mean particle size and the metal dispersion was measured with a Malvern 2600 particle size analyzer and Autochem 2910 apparatus (by a CO chemisorption technique), respectively. [Pg.417]

Blount and Falconer [54] further examined the photocatalytic oxidation of toluene using TPH. During TPH analysis of used catalyst samples, the strongly bound intermediates observed by Larson and Falconer [43] were reported to be hydrogenated and desorbed predominantly as toluene, along with smaller quantities of benzene. This indicated that the intermediate species responsible for apparent catalyst deactivation during toluene photooxidation retained an aromatic ring structure. [Pg.266]

In addition, using EXAFS analysis, this group showed importantly that the local atomic structure of MoS2 was preserved in the sulfided catalyst... [Pg.184]


See other pages where Used catalysts, analysis is mentioned: [Pg.147]    [Pg.147]    [Pg.148]    [Pg.24]    [Pg.195]    [Pg.235]    [Pg.395]    [Pg.454]    [Pg.645]    [Pg.46]    [Pg.514]    [Pg.52]    [Pg.100]    [Pg.742]    [Pg.2]    [Pg.26]    [Pg.166]    [Pg.6]    [Pg.300]    [Pg.155]    [Pg.466]    [Pg.230]    [Pg.231]    [Pg.467]    [Pg.678]    [Pg.45]    [Pg.187]    [Pg.24]    [Pg.678]    [Pg.267]    [Pg.267]    [Pg.213]    [Pg.8]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Catalysts used

Catalysts, use

© 2024 chempedia.info