Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Upgrading hydrocarbons

References Debuisschert, Q., P. Travers and V. Coupard, "Optimizing Pyrolysis Gasoline Upgrading," Hydrocarbon Engineering, June 2002. [Pg.187]

We shonld also utilize liquid hydrocarbons, which frequently accompany natural gas. These so-called natural gas liquids currently have little use besides their caloric heat value. They consist mainly of saturated straight hydrocarbons chains containing 3-6 carbon atoms, as well as some aromatics. As we found (Chapter 8), it is possible by superacidic catalytic treatment to upgrade these liquids to high-octane, commercially usable gasoline. Their use will not per se solve our long-... [Pg.210]

The direct methane conversion technology, which has received the most research attention, involves the oxidative coupling of methane to produce higher hydrocarbons (qv) such as ethylene (qv). These olefinic products may be upgraded to Hquid fuels via catalytic oligomerization processes. [Pg.78]

Natural Gas Upgrading via Fischer-Tropsch. In the United States, as in other countries, scarcities from World War II revived interest in the synthesis of fuel substances. A study of the economics of Fischer synthesis led to the conclusion that the large-scale production of gasoline from natural gas offered hope for commercial utiHty. In the Hydrocol process (Hydrocarbon Research, Inc.) natural gas was treated with high purity oxygen to produce the synthesis gas which was converted in fluidized beds of kon catalysts (42). [Pg.81]

Shale oil contains large quantities of olefinic hydrocarbons (see Table 8), which cause gumming and constitute an increased hydrogen requirement for upgrading. Properties for cmde shale oil are compared with petroleum cmde in Table 10. High pour points prevent pipeline transportation of the cmde shale oil (see Pipelines). Arsenic and iron can cause catalyst poisoning. [Pg.353]

An alternative method of produciag hydrocarbon fuels from biomass uses oils that are produced ia certaia plant seeds, such as rape seed, sunflowers, or oil palms, or from aquatic plants (see Soybeans and other oilseeds). Certain aquatic plants produce oils that can be extracted and upgraded to produce diesel fuel. The primary processiag requirement is to isolate the hydrocarbon portion of the carbon chain that closely matches diesel fuel and modify its combustion characteristics by chemical processiag. [Pg.238]

Chlorination of various hydrocarbon feedstocks produces many usehil chlorinated solvents, intermediates, and chemical products. The chlorinated derivatives provide a primary method of upgrading the value of industrial chlorine. The principal chlorinated hydrocarbons produced industrially include chloromethane (methyl chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), chloroethene (vinyl chloride monomer, VCM), 1,1-dichloroethene (vinylidene chloride), 1,1,2-trichloroethene (trichloroethylene), 1,1,2,2-tetrachloroethene (perchloroethylene), mono- and dichloroben2enes, 1,1,1-trichloroethane (methyl chloroform), 1,1,2-trichloroethane, and 1,2-dichloroethane (ethylene dichloride [540-59-0], EDC). [Pg.506]

Industrial applications of zeolites cover a broad range of technological processes from oil upgrading, via petrochemical transformations up to synthesis of fine chemicals [1,2]. These processes clearly benefit from zeolite well-defined microporous structures providing a possibility of reaction control via shape selectivity [3,4] and acidity [5]. Catalytic reactions, namely transformations of aromatic hydrocarbons via alkylation, isomerization, disproportionation and transalkylation [2], are not only of industrial importance but can also be used to assess the structural features of zeolites [6] especially when combined with the investigation of their acidic properties [7]. A high diversity of zeolitic structures provides us with the opportunity to correlate the acidity, activity and selectivity of different structural types of zeolites. [Pg.273]

Catalytic upgrading of the hydrogen-rich syngas (tar and hydrocarbon conversion, possibly in combination with filtration, also water gas shift catalyst use and... [Pg.217]

SSPD [Sasol slurry phase distillate] A process for converting natural gas to diesel fuel, kerosene, and naphtha. Operated by Sasol in South Africa since 1993. Three stages are involved. In the first, natural gas is converted to synthesis gas by reforming. In the second, the synthesis gas is converted to waxy hydrocarbons in a slurry-phase reactor. In the third, the waxes are upgraded to middle distillates. See also Arge. [Pg.252]

Among liquid fuels (XTL), only biomass-derived hydrocarbons (BTL) are a relevant option from the perspective of lowering GHG emissions not so other fossil-based liquids (CTL, GTL). Even if CTL fuel supply paths were upgraded by carbon capture and storage, the resulting specific CCF-equivalent emissions would only be reduced to the level of conventional gasoline or diesel energy chains. [Pg.226]

A sufficient upgrading is needed to minimize the content of oxygenated components and to transform them into hydrocarbons... [Pg.20]


See other pages where Upgrading hydrocarbons is mentioned: [Pg.104]    [Pg.21]    [Pg.319]    [Pg.326]    [Pg.104]    [Pg.21]    [Pg.319]    [Pg.326]    [Pg.364]    [Pg.133]    [Pg.26]    [Pg.86]    [Pg.86]    [Pg.10]    [Pg.428]    [Pg.365]    [Pg.237]    [Pg.1543]    [Pg.102]    [Pg.377]    [Pg.978]    [Pg.279]    [Pg.201]    [Pg.289]    [Pg.291]    [Pg.295]    [Pg.326]    [Pg.384]    [Pg.621]    [Pg.49]    [Pg.208]    [Pg.68]    [Pg.78]    [Pg.213]    [Pg.12]    [Pg.137]    [Pg.138]    [Pg.147]    [Pg.148]    [Pg.46]    [Pg.129]   


SEARCH



UPGRADE

Upgrader

Upgraders

Upgrading hydrocarbons, zeolite

© 2024 chempedia.info