Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Underlying signal calibration

For the underlying signal, baseline calibration is carried out in essentially the same manner as in a conventional DSC the baseline (obtained with empty matched pans) underlying heat flow can simply be subtracted from the underlying heat flow for the sample. An alternative is to mathematically fit a polynomial through this baseline and subtract this fitted curve from subsequent runs. The benefit of the latter approach is that it reduces noise. [Pg.113]

It is also possible, if desired, to use the same data set to calibrate the underlying signal in terms of heat capacity. To do this, the baseline (empty pan) underlying heat flow is subtracted from this signal for the aluminum oxide and the sample experiments. The underlying heat flow is then converted to a heat capacity by dividing it by the linear component of the heat rate, and this value is compared to the known values to calculate an underlying heat capacity calibration constant KCpU, viz ... [Pg.115]

Fig. 1 shows the block diagram of the vibrometer, in which the most sensible to small phase variations interferometric scheme is employed. It consists of the microwave and the display units. The display unit consists of the power supply 1, controller 2 of the phase modulator 3, microprocessor unit 9 and low-frequency amplifier 10. The microwave unit contains the electromechanical phase modulator 3, a solid-state microwave oscillator 4, an attenuator 5, a bidirectional coupler 6, a horn antenna 7 and a microwave detector 11. The horn antenna is used for transmitting the microwave and receiving the reflected signal, which is mixed with the reference signal in the bidirectional coupler. In the reference channel the electromechanical phase modulator is used to provide automatic calibration of the instrument. To adjust the antenna beam to the object under test, the microwave unit is placed on the platform which can be shifted in vertical and horizontal planes. [Pg.655]

Calibration curves are usually constructed by analyzing a series of external standards and plotting the detector s signal as a function of their known concentrations. As long as the injection volume is identical for every standard and sample, calibration curves prepared in this fashion give both accurate and precise results. Unfortunately, even under the best of conditions, replicate injections may have volumes that differ by as much as 5% and often may be substantially worse. For this... [Pg.573]

Currently, most manufacturers use automatic data gathering. Hcrf, pressure signals will be obtained by the use of transducers. Under lliesc circumstances, the transducers should be calibrated per code and certiHed... [Pg.423]

Fig. 31 Evolution of the Raman spectra of a high-pressure and photo-induced sample of Se while decreasing the pressure at ca. 300 K [109]. The spectrum at 3.9 GPa shows the onset of the transformation S6 p-S. The asterisks indicate the Raman signals typical for p-S whereas the peaks of two stretching vibrations of p-S coincide with those of Se at about 458 cm and 471 cm (not indicated by asterisks). The Raman spectrum of the sample recovered at ambient pressure (0 GPa) is evidently a superposition of the spectra of a-Sg and polymeric sulfur, Sj, arrows indicate plasma lines of the Ar ion laser at 515 nm, which have been used for calibration). For Raman spectra under increasing pressure, see Fig. 23 in [1] and references cited therein... Fig. 31 Evolution of the Raman spectra of a high-pressure and photo-induced sample of Se while decreasing the pressure at ca. 300 K [109]. The spectrum at 3.9 GPa shows the onset of the transformation S6 p-S. The asterisks indicate the Raman signals typical for p-S whereas the peaks of two stretching vibrations of p-S coincide with those of Se at about 458 cm and 471 cm (not indicated by asterisks). The Raman spectrum of the sample recovered at ambient pressure (0 GPa) is evidently a superposition of the spectra of a-Sg and polymeric sulfur, Sj, arrows indicate plasma lines of the Ar ion laser at 515 nm, which have been used for calibration). For Raman spectra under increasing pressure, see Fig. 23 in [1] and references cited therein...
Figure 2.15. The limit of detection LOD the minimum signal/noise-ratio necessary according to two models (ordinate) is plotted against log 0(n) under the assumption of evenly spaced calibration points. The three sets of curves are for p = 0.1 (A), 0.05 (B), and 0.02 (C). The correct statistical theory is given by the fine points, while the model presented here is depicted with coarser dots. The widely used S/N = 3. .. 6 models would be represented by horizontals at y = 3. .. 6. Figure 2.15. The limit of detection LOD the minimum signal/noise-ratio necessary according to two models (ordinate) is plotted against log 0(n) under the assumption of evenly spaced calibration points. The three sets of curves are for p = 0.1 (A), 0.05 (B), and 0.02 (C). The correct statistical theory is given by the fine points, while the model presented here is depicted with coarser dots. The widely used S/N = 3. .. 6 models would be represented by horizontals at y = 3. .. 6.
Similarly, the m/z = 60 ion current signal was converted into the partial current for methanol oxidation to formic acid in a four-electron reaction (dash-dotted line in Fig. 13.3c for calibration, see Section 13.2). The resulting partial current of methanol oxidation to formic acid does not exceed about 10% of the methanol oxidation current. Obviously, the sum of both partial currents of methanol oxidation to CO2 and formic acid also does not reach the measured faradaic current. Their difference is plotted in Fig. 13.3c as a dotted line, after the PtO formation/reduction currents and pseudoca-pacitive contributions, as evident in the base CV of a Pt/Vulcan electrode (dotted line in Fig. 13.1a), were subtracted as well. Apparently, a signihcant fraction of the faradaic current is used for the formation of another methanol oxidation product, other than CO2 and formic acid. Since formaldehyde formation has been shown in methanol oxidation at ambient temperatures as well, parallel to CO2 and formic acid formation [Ota et al., 1984 Iwasita and Vielstich, 1986 Korzeniewski and ChUders, 1998 ChUders et al., 1999], we attribute this current difference to the partial current of methanol oxidation to formaldehyde. (Note that direct detection of formaldehyde by DBMS is not possible under these conditions, owing to its low volatility and interference with methanol-related mass peaks, as discussed previously [Jusys et al., 2003]). Assuming that formaldehyde is the only other methanol oxidation product in addition to CO2 and formic acid, we can quantitatively determine the partial currents of all three major products during methanol oxidation, which are otherwise not accessible. Similarly, subtraction of the partial current for formaldehyde oxidation to CO2 from the measured faradaic current for formaldehyde oxidation yields an additional current, which corresponds to the partial oxidation of formaldehyde to formic acid. The characteristics of the different Ci oxidation reactions are presented in more detail in the following sections. [Pg.428]

A quantitative correlation between the charges under the current and mass intensity signals can be carried out as suggested by Heitbaum and Wolter [11]. The magnitude of the mass intensity response depends not only on the electrochemical properties of the system under study but also on the permeability of the electrode to the volatile products in addition to mass spectrometer parameters. A calibration of the actual experimental setup is therefore necessary. The proportionality between mass intensity (MI), and faradaic current (/) can be formulated as follows ... [Pg.129]

Set of operations that establish, under specified conditions, the relationship between values of quantities indicated by a measuring system and the corresponding values of quantities represented by a material both in form of reference materials and samples. In a wider sense, calibration represents a set of operations that establish relationships between quantities in the sample domain with quantities in the signal domain, viz y = f(x) and... [Pg.310]

Once the proton Tx and Tcli values are determined for a polymorphic system, physical mixtures of the two polymorphs can be generated (calibration samples). Subsequent acquisition of the solid state NMR spectra under quantitative conditions yields signal intensities representative of the amount of each solid state phase... [Pg.118]

Furthermore, in more recent studies high [Ca2+]mt signals are seen in only a few mitochondria within a given cell, and reports claiming very high [Ca2+]mt under physiological conditions are based on cells isolated by enzymatic dispersion. This, coupled with the uncertainty of calibration of luminescent and fluorescent Ca2+ indicators within the mitochondrial matrix, (for nuclei see Perez-Terzic et al 1997) should raise serious questions about the correct values of [Ca2+]mt. It is unfortunate that, with rare exceptions, very few available studies compare free with total mitochondrial Ca in the same cell type observed under the same condition. [Pg.264]

The calibration constant K strongly depends on the instrumental specifications, geometry of the calorimeter (Kd), and the solvent thermoelastic properties (x ) It can be determined through a comparative assay made under the same conditions as the main experiment but using a photoacoustic calibrant instead of the sample compound. The calibrants are substances that have known values of (pm from independent measurements, or more conveniently, substances that dissipate all of the absorbed energy as heat (e/>nr = 1), like ferrocene [286] or ort/w-hydroxybcnzophenone [287]. Note that the computation of K is not really needed, because a direct comparison of the signals obtained with sample and calibration compounds allows it to be eliminated from the calculations. [Pg.193]

Simultaneous measurements of the T—T spectrum and of the (Am =2) ESR signal have been performed by Brinen under steady-state excitation. The triplet concentration can be determined independently from the spectral measurements by comparing the integrated (Am =2) signal with a calibration radical signal. [Pg.27]

However, to obtain absolute concentrations of metabolites, it is necessary to analyse precisely the area under the resonance line of interest which is especially difficult for overlapping signals. In addition, a reliable calibration technique is needed to assess the correlation between the area under a resonance line and the absolute concentration of the metabolite in the tissue. [Pg.29]


See other pages where Underlying signal calibration is mentioned: [Pg.101]    [Pg.112]    [Pg.831]    [Pg.2964]    [Pg.341]    [Pg.139]    [Pg.142]    [Pg.281]    [Pg.287]    [Pg.255]    [Pg.444]    [Pg.612]    [Pg.377]    [Pg.97]    [Pg.87]    [Pg.323]    [Pg.144]    [Pg.174]    [Pg.125]    [Pg.131]    [Pg.145]    [Pg.150]    [Pg.247]    [Pg.151]    [Pg.248]    [Pg.487]    [Pg.220]    [Pg.30]    [Pg.77]    [Pg.49]    [Pg.93]    [Pg.453]    [Pg.181]    [Pg.184]   
See also in sourсe #XX -- [ Pg.112 ]




SEARCH



Signal calibration

© 2024 chempedia.info