Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultraviolet-visible electronic spectroscopy

Ultraviolet-visible (UV) spectroscopy (Section 15.1) A type of spectroscopy that employs ultraviolet or visible light UV-visible spectroscopy uses transitions between electronic energy levels 10 provide information about the conjugated part of a compound. [Pg.1277]

As already pointed out, the most direct consequence of a reduction in the nanocrystallite size on the electronic structure of semiconducting materials is a pronounced increase in the band gap due to the quantum confinement effect. While there are several ways to quantitatively understand this phenomenon from a theoretical standpoint, the experimental determination of the band gap variation as a function of size is most directly performed by ultraviolet-visible absorption spectroscopy, with the experimental absorption threshold corresponding to the direct band gap in the material. As the band gap shifts to higher energy, the blue-shift in the absorption edge signals the formation of progressively smaller sized nanocrystals. Therefore, UV-Vis absorption spectroscopy has played an immensely important role in the study of these systems and we discuss the essential aspects in Section 11.3. [Pg.372]

The ultraviolet-visible method is useful for the study of electronic transitions in molecules and atoms. Although various forms of ultraviolet-visible spectroscopy can be used to study a myriad of important chemical and physical properties, we will be most concerned with its use in quantitative analysis. It is probably the single most frequently used analytical method, with the possible exception of the analytical balance. For example, a single clinical analysis laboratory in a major hospital may perform a million chemical analyses a year, primarily on serum and urine, and about 707o of these tests are done by ultraviolet-visible absorption spectroscopy. Atomic absorption and emission spectroscopy (Chaps. 10 and 11) is used primarily to analyze for metallic elements in a variety of matrices—serum, natural waters, tissues, and so forth. [Pg.153]

The characterization includes infrared, ultraviolet-visible, electron spin resonance and x-ray diffraction spectroscopies, thermogravimetric analysis and differential scanning calorimetry. [Pg.404]

As noted above, ZlAco for chiral molecules is generally rather small. For electronic transitions, AAcd is usually about 0.1% of the absorbance of the peak and is fairly easily measured. For example, ultraviolet-visible CD spectroscopy has been used for many years to study the conformation of biopolymers. For vibrational transitions, AAcd is rarely more than 0.01% of the peak absorbance and is often at least an order of magnitude smaller than this. Thus, the measurement of VCD spectra presents a real challenge from an instrumental viewpoint. [Pg.269]

Ultraviolet visible (UV VIS) spectroscopy, which probes the electron distribution especially m molecules that have conjugated n electron systems Mass spectrometry (MS), which gives the molecular weight and formula both of the molecule itself and various structural units within it... [Pg.519]

Ultraviolet visible (UV VIS) spectroscopy (Section 13 21) An alytical method based on transitions between electronic en ergy states in molecules Useful in studying conjugated systems such as polyenes... [Pg.1296]

Table 7.9 Electronic Absorption Bands for Representative Chromophores Table 7.10 Ultraviolet Cutoffs of Spectrograde Solvents Table 7.11 Absorption Wavelength of Dienes Table 7.12 Absorption Wavelength of Enones and Dienones Table 7.13 Solvent Correction for Ultraviolet-Visible Spectroscopy Table 7.14 Primary Bands of Substituted Benzene and Heteroaromatics Table 7.15 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives... Table 7.9 Electronic Absorption Bands for Representative Chromophores Table 7.10 Ultraviolet Cutoffs of Spectrograde Solvents Table 7.11 Absorption Wavelength of Dienes Table 7.12 Absorption Wavelength of Enones and Dienones Table 7.13 Solvent Correction for Ultraviolet-Visible Spectroscopy Table 7.14 Primary Bands of Substituted Benzene and Heteroaromatics Table 7.15 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives...
The section on Spectroscopy has been expanded to include ultraviolet-visible spectroscopy, fluorescence, Raman spectroscopy, and mass spectroscopy. Retained sections have been thoroughly revised in particular, the tables on electronic emission and atomic absorption spectroscopy, nuclear magnetic resonance, and infrared spectroscopy. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon ICP, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-29, and phosphorus-31. [Pg.1287]

The preceding empirical measures have taken chemical reactions as model processes. Now we consider a different class of model process, namely, a transition from one energy level to another within a molecule. The various forms of spectroscopy allow us to observe these transitions thus, electronic transitions give rise to ultraviolet—visible absorption spectra and fluorescence spectra. Because of solute-solvent interactions, the electronic energy levels of a solute are influenced by the solvent in which it is dissolved therefore, the absorption and fluorescence spectra contain information about the solute-solvent interactions. A change in electronic absorption spectrum caused by a change in the solvent is called solvatochromism. [Pg.435]

The basic methods of the identification and study of matrix-isolated intermediates are infrared (IR), ultraviolet-visible (UV-vis), Raman and electron spin resonance (esr) spectroscopy. The most widely used is IR spectroscopy, which has some significant advantages. One of them is its high information content, and the other lies in the absence of overlapping bands in matrix IR spectra because the peaks are very narrow (about 1 cm ), due to the low temperature and the absence of rotation and interaction between molecules in the matrix. This fact allows the identification of practically all the compounds present, even in multicomponent reaetion mixtures, and the determination of vibrational frequencies of molecules with high accuracy (up to 0.01 cm when Fourier transform infrared spectrometers are used). [Pg.6]

Ultraviolet-visible spectroscopy (UV = 200 - 400 nm, visible = 400 - 800 nm) corresponds to electronic excitations between the energy levels that correspond to the molecular orbital of the systems. In particular, transitions involving n orbital and ion pairs (n = non-bonding) are important and so UV/VIS spectroscopy is of most use for identifying conjugated systems which tend to have stronger absorptions... [Pg.79]

With the exception of single-crystal transmission work, most solids are too opaque to permit the conventional use of ultraviolet/visible (UV/VIS) electronic spectroscopy. As a result, such work must be performed through the use of diffuse reflection techniques [8-10]. Important work has been conducted in which UV/VIS spectroscopy has been used to study the reaction pathways of various solid state reactions. Other applications have been made in the fields of color measurement and color matching, areas which can be of considerable importance when applied to the coloring agents used in formulations. [Pg.5]

Ultraviolet/visible absorption, fluorescence, infrared and Raman spectroscopies are useful for studying structures (configuration, conformation, symmetry etc.) of electronically ground and excited states of linear polyenes, which have attracted much attention of... [Pg.149]

PhI=NTs in MeCN affords a copper species that is indistinguishable by ultraviolet-visible (UV-vis) spectroscopy from an identical solution derived from Cu(OTf)2. Given the strong oxidizing nature of PhI=NTs, it seems likely that both catalysts proceed through a Cu(II) species. Beyond this, little can be said with certainty. If nitrenoid formation proceeds by a two-electron oxidation of the catalyst, one would need to invoke Cu(IV) as an intermediate in this process (77). This issue is resolved if one invokes the intervention of a bimetallic complex in the catalytic cycle. However, attempted observation of a nonlinear effect revealed a linear relationship between ligand enantiopurity and product ee (77, 78). [Pg.40]

In ultraviolet and visible region, electronic transition of atoms and molecules are observed. This is why it is called electronic spectroscopy. In infrared region the absorption of radiation by an organic compound causes molecular vibrations and so it is called vibrational spectroscopy. [Pg.212]

Spectroscopy produces spectra which arise as a result of interaction of electromagnetic radiation with matter. The type of interaction (electronic or nuclear transition, molecular vibration or electron loss) depends upon the wavelength of the radiation (Tab. 7.1). The most widely applied techniques are infrared (IR), Mossbauer, ultraviolet-visible (UV-Vis), and in recent years, various forms ofX-ray absorption fine structure (XAFS) spectroscopy which probe the local structure of the elements. Less widely used techniques are Raman spectroscopy. X-ray photoelectron spectroscopy (XPS), secondary ion imaging mass spectroscopy (SIMS), Auger electron spectroscopy (AES), electron spin resonance (ESR) and nuclear magnetic resonance (NMR) spectroscopy. [Pg.139]


See other pages where Ultraviolet-visible electronic spectroscopy is mentioned: [Pg.9]    [Pg.10]    [Pg.9]    [Pg.10]    [Pg.1623]    [Pg.353]    [Pg.4968]    [Pg.357]    [Pg.1125]    [Pg.2749]    [Pg.1143]    [Pg.379]    [Pg.388]    [Pg.13]    [Pg.82]    [Pg.150]    [Pg.521]    [Pg.121]    [Pg.1143]    [Pg.363]    [Pg.60]    [Pg.66]    [Pg.245]    [Pg.464]    [Pg.85]    [Pg.353]    [Pg.174]    [Pg.76]    [Pg.145]    [Pg.227]    [Pg.423]   


SEARCH



Spectroscopy ultraviolet visible

Ultraviolet spectroscopy

Ultraviolet spectroscopy electrons

Ultraviolet-visible

© 2024 chempedia.info