Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrasound parameters

Proper selection of ultrasound parameters is required to ensure safe and efficacious sonophoresis. Ultrasound parameters such as frequency, intensity, duty cycle, and distance of transducer from the skin influence the efficiency of sonophoresis. Below we present a general discussion of the role played by various ultrasound parameters in sonophoresis. Note that the objective of this discussion is not to point out the exact values of ultrasound parameters to be selected, but rather to present information regarding the dependence of sonophoretic enhancement on each parameter. [Pg.3830]

In a recent systematic study of the dependence of 20 kHz sonophoresis on ultrasound parameters, Mitragotri et al. showed that the enhancement of skin permeability varies linearly with ultrasound intensity and ultrasound on-time (for pulsed ultrasound, ultrasound on-time equals the product of total ultrasound application time and duty cycle), while is independent of the ultrasound duty cycle. Based on those findings, fhe authors reported that there is a threshold energy dose for ultrasound induced transdermal drug transport. Once the threshold value is crossed, the enhancement of skin permeability varies linearly with the ultrasound energy dose (J/cm ), which is calculated as the product of ultrasound intensity and ultrasound on-time. This result indicates that ultrasound energy dose can be used as a predictor of the effect of 20 kHz sonophoresis. The authors also indicated that it is important to determine the threshold energy dose for each individual sonophoresis system, for example, the real in vivo situation, because it may vary from system to system. Specifically, it may vary between different skin models, as well as with the ultrasound frequency and the distance of the transducer from the skin surface, etc. [Pg.3833]

Application of ultrasound enhances transdermal drug transport, a phenomenon referred to as sonophoresis. Proper choice of ultrasound parameters including ultrasound energy dose, frequency, intensity, pulse length, and distance of transducer from the skin is... [Pg.3840]

The parameters (frequency, intensity, duration, pulse interval, etc.) for the ultrasound application have a major effect on ultrasound triggered release (20, 21). Ultrasound parameters should hence be optimized for each liposome preparation. Furthermore, there is evidence that clinical doppler ultrasound can induce more extensive release of drugs from liposomes (20) than Sonitron. [Pg.127]

Criteria for detecting significant stenosis have been developed for peripheral arteries. These criteria have been derived by correlating the ultrasound parameters to angiography, pressure measurements across the stenosis, and measurements on operative specimens. For peripheral... [Pg.28]

Then, the weld depths penetration are controlled in a pulse-echo configuration because the weld bead (of width 2 mm) disturbs the detection when the pump and the probe beams are shifted of 2.2 mm. The results are presented in figure 8 (identical experimental parameters as in figure 7). The slow propagation velocities for gold-nickel alloy involve that the thermal component does not overlap the ultrasonic components, in particular for the echo due to the interaction with a lack of weld penetration. The acoustic response (V shape) is still well observed both for the slot of height 1.7 mm and for a weld depth penetration of 0.8 mm (lack of weld penetration of 1.7 mm), even with the weld bead. This is hopeful with regard to the difficulties encountered by conventional ultrasound in the case of the weld depths penetration. [Pg.698]

The results presented below were obtained using a 2 mm thick carbon fiber reinforced epoxy composite laminate with 16 layers. The laminate was quasi isotropic with fiber orientations 0°, 90° and 45°. The laminate had an average porosity content of approximately 1.7%. The object was divided in a training area and an evaluation area. The model parameters were determined by data solely from the training area. Both ultrasound tranducers used in the experiment had a center frequency of 21 MHz and a 6 dB bandwidth of 70%. [Pg.890]

Sonochemistry is strongly affected by a variety of external variables, including acoustic frequency, acoustic intensity, bulk temperature, static pressure, ambient gas, and solvent (47). These are the important parameters which need consideration in the effective appHcation of ultrasound to chemical reactions. The origin of these influences is easily understood in terms of the hot-spot mechanism of sonochemistry. [Pg.262]

Ultrasound can thus be used to enhance kinetics, flow, and mass and heat transfer. The overall results are that organic synthetic reactions show increased rate (sometimes even from hours to minutes, up to 25 times faster), and/or increased yield (tens of percentages, sometimes even starting from 0% yield in nonsonicated conditions). In multiphase systems, gas-liquid and solid-liquid mass transfer has been observed to increase by 5- and 20-fold, respectively [35]. Membrane fluxes have been enhanced by up to a factor of 8 [56]. Despite these results, use of acoustics, and ultrasound in particular, in chemical industry is mainly limited to the fields of cleaning and decontamination [55]. One of the main barriers to industrial application of sonochemical processes is control and scale-up of ultrasound concepts into operable processes. Therefore, a better understanding is required of the relation between a cavitation coUapse and chemical reactivity, as weU as a better understanding and reproducibility of the influence of various design and operational parameters on the cavitation process. Also, rehable mathematical models and scale-up procedures need to be developed [35, 54, 55]. [Pg.298]

In Fig. 1.1, the parameter space for transient and stable cavitation bubbles is shown in R0 (ambient bubble radius) - pa (acoustic amplitude) plane [15]. The ambient bubble radius is defined as the bubble radius when an acoustic wave (ultrasound) is absent. The acoustic amplitude is defined as the pressure amplitude of an acoustic wave (ultrasound). Here, transient and stable cavitation bubbles are defined by their shape stability. This is the result of numerical simulations of bubble pulsations. Above the thickest line, bubbles are those of transient cavitation. Below the thickest line, bubbles are those of stable cavitation. Near the left upper side, there is a region for bubbles of high-energy stable cavitation designated by Stable (strong nf0) . In the brackets, the type of acoustic cavitation noise is indicated. The acoustic cavitation noise is defined as acoustic emissions from... [Pg.3]

In the sonochemical reactors, selection of suitable operating parameters such as the intensity and the frequency of ultrasound and the vapor pressure of the cavitating media is an essential factor as the bubble behavior and hence the yields of sonochemical transformation are significantly altered due to these parameters. It is necessary that both the frequency and intensity of irradiation should not be increased beyond an optimum value, which is also a function of the type of the application and the equipment under consideration. The liquid phase physicochemical properties should be adjusted in such a way that generation of cavitation events is eased and also large number of smaller size cavities are formed in the system. [Pg.63]

Acoustic cavitation is as a result of the passage of ultrasound through the medium, while hydrodynamic cavitation occurs as the result of the velocity variation in the flow due to the changing geometry of the path of fluid flow. In spite of this difference in the mechanisms of generation of two types of cavitation, bubble behavior shows similar trends with the variation of parameters in both these types of cavitation. The two main aspects of bubble behavior in cavitation phenomena are ... [Pg.72]

Moholkar et al. [11] studied the effect of operating parameters, viz. recovery pressure and time of recovery in the case of hydrodynamic cavitation reactors and the frequency and intensity of irradiation in the case of acoustic cavitation reactors, on the cavity behavior. From their study, it can be seen that the increase in the frequency of irradiation and reduction in the time of the pressure recovery result in an increment in the lifetime of the cavity, whereas amplitude of cavity oscillations increases with an increase in the intensity of ultrasonic irradiation and the recovery pressure and the rate of pressure recovery. Thus, it can be said that the intensity of ultrasound in the case of acoustic cavitation and the recovery pressure in the case of hydrodynamic cavitation are analogous to each other. Similarly, the frequency of the ultrasound and the time or rate of pressure recovery, are analogous to each other. Thus, it is clear that hydrodynamic cavitation can also be used for carrying out so called sonochemical transformations and the desired/sufficient cavitation intensities can be obtained using proper geometric and operating conditions. [Pg.73]

Various irradiation parameters were investigated, such as the types of organic additives, intensity of the ultrasound, dissolved gas and distance between the reaction vessel and the oscillator. In the case of frequency effects, other irradiation systems were used. The details are described in the section of effects of ultrasound frequency on the rate of reduction. [Pg.134]

The chemical reactions induced by ultrasonic irradiation are generally influenced by the irradiation conditions and procedures. It is suggested that ultrasound intensity , dissolved gas , distance between the reaction vessel and the oscillator and ultrasound frequency are important parameters to control the sonochemical reactions. [Pg.137]

Some of the reports are as follows. Mizukoshi et al. [31] reported ultrasound assisted reduction processes of Pt(IV) ions in the presence of anionic, cationic and non-ionic surfactant. They found that radicals formed from the reaction of the surfactants with primary radicals sonolysis of water and direct thermal decomposition of surfactants during collapsing of cavities contribute to reduction of metal ions. Fujimoto et al. [32] reported metal and alloy nanoparticles of Au, Pd and ft, and Mn02 prepared by reduction method in presence of surfactant and sonication environment. They found that surfactant shows stabilization of metal particles and has impact on narrow particle size distribution during sonication process. Abbas et al. [33] carried out the effects of different operational parameters in sodium chloride sonocrystallisation, namely temperature, ultrasonic power and concentration sodium. They found that the sonocrystallization is effective method for preparation of small NaCl crystals for pharmaceutical aerosol preparation. The crystal growth then occurs in supersaturated solution. Mersmann et al. (2001) [21] and Guo et al. [34] reported that the relative supersaturation in reactive crystallization is decisive for the crystal size and depends on the following factors. [Pg.176]


See other pages where Ultrasound parameters is mentioned: [Pg.3830]    [Pg.3840]    [Pg.261]    [Pg.262]    [Pg.124]    [Pg.198]    [Pg.8682]    [Pg.255]    [Pg.1076]    [Pg.797]    [Pg.3830]    [Pg.3840]    [Pg.261]    [Pg.262]    [Pg.124]    [Pg.198]    [Pg.8682]    [Pg.255]    [Pg.1076]    [Pg.797]    [Pg.729]    [Pg.729]    [Pg.755]    [Pg.845]    [Pg.866]    [Pg.897]    [Pg.260]    [Pg.494]    [Pg.473]    [Pg.773]    [Pg.304]    [Pg.77]    [Pg.241]    [Pg.46]    [Pg.92]    [Pg.114]    [Pg.115]    [Pg.117]    [Pg.119]    [Pg.131]    [Pg.142]    [Pg.154]    [Pg.173]    [Pg.174]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



© 2024 chempedia.info