Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrasound, mass transport

Compton R G, Ekiund J C, Page S D, Mason T J and Walton D J 1996 Voltammetry in the presence of ultrasound mass transport effects J. Appl. Electrochem. 26 775... [Pg.1952]

The effects of ultrasound-enlianced mass transport have been investigated by several authors [73, 74, 75 and 76]. Empirically, it was found that, in the presence of ultrasound, the limiting current for a simple reversible electrode reaction exhibits quasi-steady-state characteristics with intensities considerably higher in magnitude compared to the peak current of the response obtained under silent conditions. The current density can be... [Pg.1942]

Birkin P R and SilvaMartinez S 1995 The effect of ultrasound on mass-transport to a microelectrode J. Chem. See., Chem. Commun. 17 1807... [Pg.1952]

Apphcations of ultrasound to electrochemistry have also seen substantial recent progress. Beneficial effects of ultrasound on electroplating and on organic synthetic apphcations of organic electrochemistry (71) have been known for quite some time. More recent studies have focused on the underlying physical theory of enhanced mass transport near electrode surfaces (72,73). Another important appHcation for sonoelectrochemistry has been developed by J. Reisse and co-workers for the electroreductive synthesis of submicrometer powders of transition metals (74). [Pg.265]

In the literature we can now find several papers which establish a widely accepted scenario of the benefits and effects of an ultrasound field in an electrochemical process [13-15]. Most of this work has been focused on low frequency and high power ultrasound fields. Its propagation in a fluid such as water is quite complex, where the acoustic streaming and especially the cavitation are the two most important phenomena. In addition, other effects derived from the cavitation such as microjetting and shock waves have been related with other benefits reported for this coupling. For example, shock waves induced in the liquid cause not only an enhanced convective movement of material but also a possible surface damage. Micro jets of liquid, with speeds of up to 100 ms-1, result from the asymmetric collapse of cavitation bubbles at the solid surface [16] and contribute to the enhancement of the mass transport of material to the solid surface of the electrode. Therefore, depassivation [17], reaction mechanism modification [18], surface activation [19], adsorption phenomena decrease [20] and the mass transport enhancement [21] are effects derived from the presence of an ultrasound field on electrode processes. We have only listed the main phenomena referring to the reader to the specific reviews [22, 23] and reference therein. [Pg.108]

Sonoelectrochemistry has also been used for the efficient employment of porous electrodes, such as carbon nanofiber-ceramic composites electrodes in the reduction of colloidal hydrous iron oxide [59], In this kind of systems, the electrode reactions proceed with slow rate or require several collisions between reactant and electrode surface. Mass transport to and into the porous electrode is enhanced and extremely fast at only modest ultrasound intensity. This same approach was checked in the hydrogen peroxide sonoelectrosynthesis using RVC three-dimensional electrodes [58]. [Pg.115]

Ultrasound frequency has revealed as the most important operational variable. Low frequency (20-60 kHz) has been most used to obtain mechanical effects such mass transport enhancement, shock waves, microjetting and surface vibration, especially used in the nanostructure preparation. It has been reported [118] that... [Pg.122]

Cooper EL, Coury LA jr (1998) Mass transport in sonovoltammetry with evidence of hydrodynamic modulation from ultrasound. J Electrochem Soc 145 1994—1999... [Pg.125]

The possible mechanisms which one might invoke for the activation of these transition metal slurries include (1) creation of extremely reactive dispersions, (2) improved mass transport between solution and surface, (3) generation of surface hot-spots due to cavitational micro-jets, and (4) direct trapping with CO of reactive metallic species formed during the reduction of the metal halide. The first three mechanisms can be eliminated, since complete reduction of transition metal halides by Na with ultrasonic irradiation under Ar, followed by exposure to CO in the absence or presence of ultrasound, yielded no metal carbonyl. In the case of the reduction of WClfc, sonication under CO showed the initial formation of tungsten carbonyl halides, followed by conversion of W(C0) , and finally its further reduction to W2(CO)io Thus, the reduction process appears to be sequential reactive species formed upon partial reduction are trapped by CO. [Pg.206]

However, ultrasonic rate enhancements of heterogeneous catalysis have usually been relatively modest (less than tenfold). The effect of irradiating operating catalysts is often simply due to improved mass transport (58). In addition, increased dispersion during the formation of catalysts under ultrasound (59) will enhance reactivity, as will the fracture of friable solids (e.g., noble metals on C or silica (60),(62),(62) or malleable metals (63)). [Pg.208]

Simal, S., Benedito, J., Sanchez, E.S., and Rossello, C. 1998. Use of ultrasound to increase mass transport rates during osmotic dehydration. J. Food Engineer. 36, 323-336. [Pg.236]

Photochemical decomposition can also be carried out in the presence of a suspension of photoactive material such as Ti02 where substrate absorption onto the uv activated surface can initiate chemical reactions e. g. the oxidation of sulphides to sul-phones and sulphoxides [37]. This technology has been adapted to the destruction of polychlorobiphenyls (PCB s) in wastewater and is of considerable interest in environmental protection. Using pentachlorophenol as a model substrate in the presence of 0.2 % TiOj uv irradiation is relatively efficient in dechlorination (Tab. 4.5) [38]. When ultrasound is used in conjunction with photolysis, dechlorination is dramatically improved. This improvement is the result of three mechanical effects of sonochemistry namely surface cleaning, particle size reduction and increased mass transport to the powder surface. [Pg.142]

The study of electrosynthetic reactions is not a new phenomenon. Such reactions have been the study of investigation for more than a century and a half since Faraday first noted the evolution of ethane from the electrolysis of aqueous acetate solutions. This reaction is more well known as the Kolbe electrolysis [51]. Since the report of Kolbe, chemists have had to wait nearly a century until the development, in the 1960 s, of organic solvents with high-dielectric which have been able to vastly increase the scope of systems that could be studied [52]. Added to this more recently is the synergistic effect that ultrasound should be able to offer in the improvement of the expected reactions by virtue of its ability to clean of surfaces, form fresh surfaces and improve mass transport (which may involve different kinetic and thermodynamic requirements)... [Pg.249]

Ultrasound is known for its capacity to promote heterogeneous reactions (Ley and Low, 1989) mainly through greatly increased mass transport, interfacial cleaning and thermal effects. In addition, homogeneous chemical reactions have been reported to be modified (Suslick et ai, 1983 Luche, 1990 Colarusso and Serpone, 1996) for example the sonochemical generation of radical species in aqueous media is important in environmental detoxification (Kotronarou et al., 1991 Serpone et al., 1994). [Pg.70]

An often-adopted sonovoltammetric design is that shown in Fig. 35 built around a conventional three-electrode cell and which allows the ultrasound intensity and the distance between the horn and electrode to be continuously varied at a fixed ultrasound frequency of typically 20 kHz. This arrangement is much less sensitive to the shape and dimensions of the electrochemical cell than when a sonic bath is utilized. A further and important point of contrast is that the direct contact of the (metallic) horn with the electrochemical system may dictate the use of a bipotentiostat to control its electrical potential relative to that of the reference electrode (Marken and Compton, 1996). Alternatively, the horn may be electrically isolated (Huck, 1987 Klima et al., 1994). A significant merit of the design shown in Fig. 35 is that the mass transport characteristics may be empirically but reliably established. It is to this essential topic we next turn. [Pg.71]


See other pages where Ultrasound, mass transport is mentioned: [Pg.75]    [Pg.75]    [Pg.75]    [Pg.75]    [Pg.1942]    [Pg.264]    [Pg.10]    [Pg.36]    [Pg.113]    [Pg.115]    [Pg.118]    [Pg.118]    [Pg.121]    [Pg.123]    [Pg.123]    [Pg.253]    [Pg.275]    [Pg.83]    [Pg.103]    [Pg.111]    [Pg.197]    [Pg.207]    [Pg.219]    [Pg.252]    [Pg.264]    [Pg.12]    [Pg.100]    [Pg.568]    [Pg.624]    [Pg.90]    [Pg.219]    [Pg.73]    [Pg.79]    [Pg.80]   
See also in sourсe #XX -- [ Pg.286 ]




SEARCH



Mass transport

Mass transport processes ultrasound

© 2024 chempedia.info