Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrasonic flowmeters, flow measurement

The principal classes of flow-measuring instruments used in the process industries are variable-head, variable-area, positive-displacement, and turbine instruments mass flowmeters vortex-shedding and ultrasonic flowmeters magnetic flowmeters and more recently, Coriolis mass flowmeters. Head meters are covered in detail in Sec. 5. [Pg.59]

One of the earliest methods of mass flow determination was to install two separate sensors one to measure the volumetric flow, and the other to detect the density of the flowing stream. On the basis of these two inputs, a microprocessor-based transmitter can measure mass flow. A further improvement occurred when the density and volumetric flow sensors were combined in a single package (Figure 3.75). These units are composed of either a Doppler ultrasonic flowmeter or a magnetic flowmeter and a gamma radiation-... [Pg.412]

Cross-correlation flowmeters in combination with concentration detectors are available for the measurement of the mass flow of solids in pneumatic conveying systems or for volumetric flow measurements. The cross-correlation flowmeter uses a microwave (or gamma ray, ultrasonic, or photometric detectors) as the densitometer and a measurement of the time it takes for particles to travel a known distance to determine velocity. [Pg.427]

Solid/liquid flows are commonly found in industrial processes to avoid flow obstruction, nonintrusive flowmeters are generally preferred. Flowmeters based on ultrasonic techniques are ideal nonintrusive instruments because, in most applications, the ultrasonic transducers are simply clamped on the outside pipe wall. In this section, we describe two ultrasonic flowmeters based on the Doppler and cross-correlation methods. Both require an inherent flow tag thus both are directly applicable to solid/liquid flows because of the presence of solid particles. Both flowmeters measure mainly particle velocity liquid-phase velocity, if different from the particle velocity, is not determined. [Pg.172]

Ultrasonic Flowmeters. Ultrasonic methods have been used to measure flow velocity and concentration in slurry pipelines (22) and emulsion pipelines (65). There are three methods of ultrasonic flow meter applications transmission of ultrasonic wave, beam deflection, and frequency shift method (22). The frequency shift method (the ultrasonic Doppler flowmeter) consists of a transducer and an electronic control box. The transducer is either clamped on the outside of the pipe or inserted into the pipe so that it is flush with the inside of the pipe wall. The transducer comprises the sensors to transmit and receive the Doppler signal. These sensors are either in a single transducer or in two separate transducers. The control box processes transmitted and received signals (Figure 25). [Pg.216]

The implanted tubing was pat ially exposed to measure the flow in situ by an ultrasonic flowmeter (Nihon Kohken Co., Model MUV-21(X)S). The antithrombogenicity of the polymer tubing was evaluated by measuring the time of patency. [Pg.513]

MFC-5M-1985(R1994) Measurement of Liquid Flow in Closed Conduits Using T)ransit-Time Ultrasonic Flowmeters Order No. K00U5 29.00... [Pg.884]

Density Gauges These are used to measure the density or suspended solids content of the feed and underflow streams. Gamma radiation devices are the most commonly used for automatic control, but ultrasonic devices are effective in the lower range of slurry density. Marcy pulp density scales are an effective manually operated device. A solids mass flow indication is usually obtained by combining a density gauge output with the output from a flowmeter. [Pg.1689]

Transit-time flowmeters measure the time taken for an ultrasonic energy pulse to traverse a pipe section both with and against the flow of the liquid within the pipe (Figure 3.97). The flow rate is the difference in transit times. Transit-time flowmeters are widely used in water treatment and chemical plant applications. This type of ultrasonic meter is considerably more expensive than the Doppler version, but it offers better accuracy. Unlike the Doppler meter, it is usable only on relatively clean fluid applications. Its advantages... [Pg.434]

In 1842, Christian Doppler discovered that the wavelength of sound is a function of the receiver s movement. The transmitter of a Doppler flowmeter projects an ultrasonic beam into the flowing stream and detects the reflected frequency, which is shifted in proportion to stream velocity. The difference between the transmitted and reflected velocities is called the beat frequency, and its value relates to the velocity of the reflecting surfaces (solid particles and gas bubbles) in the process stream. For accurate readings it is important that the ultrasonic radiation be reflected from a representative portion of the flow stream. The main advantage of Doppler meters is their low cost, which does not increase with pipe size, whereas their main limitation is that they are not suitable for the measurement of clean fluids or gases. [Pg.435]

A pair of rigid stainless-steel wire hook-like electrodes with a distance of 4 mm are adjusted to the artery by means of a rack and pinion gear manipulator. The artery is raised slightly away from the surrounding tissue. Isolation of the electrodes is achieved by the insertion of a small piece of parafilm under the artery. Blood flow is measured with an ultrasonic Doppler flowmeter (Transonic, Ithaca NY, USA) the flow probe (1RB) is placed proximal to the damaged area. [Pg.284]

Full-bore meters include variable-head meters such as venturi and orifice meters and variable-area meters such as rotameters. These will be described in some detail. Briefer descriptions are given of other full-bore measuring devices V-element, magnetic, vortex shedding, turbine and positive-displacement meters, ultrasonic meters, and mass flow devices such as Coriolis and thermal flowmeters. [Pg.214]

OTHER INSERTION METERS. Modified forms of magnetic meters, turbine meters, ultrasonic meters, thermal mass flowmeters, and other types are available as insertion meters. They all have advantages for certain services. Insertion meters are generally cheaper than full-bore meters and are usually the most cost-effective method of measuring flow in large pipes. [Pg.231]

The cross-correlation technique measures the time of flight of an inherent flow tag passing through two sensors separated by a known distance. The technique has been used successfully to monitor single-phase fluid flows in which turbulent eddies modulate the interrogating ultrasonic beams. This type of correlation flowmeter has also been developed for solid/liquid and gas/liquid flows, in which the density fluctuation, caused by clusters of solids and by gas bubbles, is the prime inherent flow tag. [Pg.178]


See other pages where Ultrasonic flowmeters, flow measurement is mentioned: [Pg.187]    [Pg.763]    [Pg.208]    [Pg.60]    [Pg.197]    [Pg.291]    [Pg.60]    [Pg.587]    [Pg.935]    [Pg.2016]    [Pg.81]    [Pg.422]    [Pg.940]    [Pg.2004]    [Pg.767]    [Pg.1001]    [Pg.16]    [Pg.379]    [Pg.324]    [Pg.1085]    [Pg.403]    [Pg.403]    [Pg.390]    [Pg.1066]    [Pg.398]    [Pg.162]    [Pg.171]    [Pg.207]   


SEARCH



Flow measurement

Flow measuring

Flowmeters

Flowmeters ultrasonic

Ultrasonic flow measurement

© 2024 chempedia.info