Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

U oxalate

In the methods developed for determining hafnium, use has been made of the Mo-Hf heteropoly acid, reduced with tin(U) oxalate (e = 7.7-10 at 750 nm in n-butanol) [88-90]. Hafnium has also been determined by means of its reaction with molybdophosphoric acid and as reduced molybdosulphatohafnic acid [91]. [Pg.479]

It is evident from the equation that potentiometric CO2 electrodes as well as amperometric O2 or H2O2 electrodes can be used as transducers. Both potentiometric and amperometric sensors have been covered by a layer of oxalate oxidase protected by a dialysis membrane (Bradley and Rechnitz, 1986 Rahni et al.f 1986a). The sensors had a pH optimum at pH 3.5-4. Diffusion control was reached at 1 U oxalate oxidase per electrode. Oxalate determination was not affected by ascorbic acid or amino acids. The hydrogen peroxide-detecting sensor (Rahni et al., 1986a) has been used to measure oxalate in urine diluted 1 40. [Pg.154]

One route to o-nitrobenzyl ketones is by acylation of carbon nucleophiles by o-nitrophenylacetyl chloride. This reaction has been applied to such nucleophiles as diethyl malonatc[l], methyl acetoacetate[2], Meldrum s acid[3] and enamines[4]. The procedure given below for ethyl indole-2-acetate is a good example of this methodology. Acylation of u-nitrobenzyl anions, as illustrated by the reaction with diethyl oxalate in the classic Reissert procedure for preparing indolc-2-carboxylate esters[5], is another route to o-nitrobenzyl ketones. The o-nitrophenyl enamines generated in the first step of the Leimgruber-Batcho synthesis (see Section 2.1) are also potential substrates for C-acylation[6,7], Deformylation and reduction leads to 2-sub-stituted indoles. [Pg.14]

The reduction of o-nitrophenyl acetic acids or esters leads to cyclization to oxindoles. Several routes to o-nitrophenylacetic acid derivatives arc available, including nitroarylation of carbanions with o-nitroaryl halides[2l,22] or trif-late[23] and acylation of o-nitrotoluenes with diethyl oxalate followed by oxidation of the resulting 3-(u-nitrophenyl)pyruvate[24 26]. [Pg.17]

Plutonium. The plutonium nitrate product must be converted to MO fuel if it is to be recycled to lightwater reactors. Whether from a plutonium nitrate solution or a mixed U/Pu nitrate solution, the plutonium is typically precipitated as the oxalate and subsequendy calcined to the oxide for return to the fuel cycle (33). [Pg.206]

Stannous oxalate is used as an esterification and transesterification catalyst for the preparation of alkyds, esters, and polyesters (172,173). In esterification reactions, it limits the undeskable side reactions responsible for the degradation of esters at preparation temperatures. The U.S. Bureau of Mines conducted research on the use of stannous oxalate as a catalyst in the hydrogenation of coal (174) (see Coal). [Pg.75]

Donnet, M., Jongen, N., Lemaitre, J., Bowen, P. and Hofmann, H., 1999. Better control of nucleation and phase purity using a new segmented flow tubular reactor Model system Precipitation of calcium oxalate. In 14th International Symposium on Industrial Crystallization. Cambridge, U.K., September 12-16, Institution of Chemical Engineers, CD ROM, pp. 1-13. [Pg.305]

Several carboxylates, both simple salts and complex anions, have been prepared often as a means of precipitating the An ion from solution or, as in the case of simple oxalates, in order to prepare the dioxides by thermal decomposition. In K4[Th(C204)4].4Fl20 the anion is known to have a 10-coordinate, bicapped square antipris-matic structure (Fig. 31.8b). -diketonates are precipitated from aqueous solutions of An and the ligand by addition of alkali, and nearly all are sublimable under vacuum. [An(acac)4], (An = Th, U, Np, Pu) are apparently dimorphic but both structures are based on an 8-coordinate, distorted square antiprism. [Pg.1277]

Los Alamos is processing a wide variety of residues, including Pu-Be neutron sources, polystyrene-Pu02-U02 blocks, incinerator ash, Pu-U alloys and oxides, Pu-Zr alloys and oxides, Pu-Np alloys and oxides, Pu-Th alloys and oxides, etc. Processes have been developed for these scrap items (see Figure 2), but we need to know more about Pu-Np separations Pu-Th separations oxalate precipitations for both plus 3 and plus 4 valences valence stabilization dissolution methods for high-fired impure oxides in-line alpha monitors to measure extremely low concentrations of Pu and Am in HNO3 solutions and solubility of various mixtures of Pu02 and UO2 under a variety of conditions. [Pg.356]

Conceptual Flowsheet for the Extraction of Actinides from HLLW. Figure 5 shows a conceptual flowsheet for the extraction of all the actinides (U, Np, Pu, Am, and Cm) from HLLW using 0.4 M 0< >D[IB]CMP0 in DEB. The CMPO compound was selected for this process because of the high D m values attainable with a small concentration of extractant and because of the absence of macro-concentrations of uranyl ion. Distribution ratios relevant to the flowsheet are shown in previous tables, IV, V, VI, and VII and figures 1 and 2. One of the key features of the flowsheet is that plutonium is extracted from the feed solution and stripped from the organic phase without the addition of any nitric acid or use of ferrous sulfamate. However, oxalic acid is added to complex Zr and Mo (see Table IV). The presence of oxalic acid reduces any Np(VI) to Np(IV) (15). The presence of ferrous ion, which is... [Pg.439]

Hauser A, von Arx ME, Langford VS, Oetliker U, Kairouani S, Pillonnet A (2004) Photophysical Properties of Three-Dimensional Transition Metal Tris-Oxalate Network Structures. 241 65-96... [Pg.259]

Urzua U, PJ Kersten, R Vicuna (1998) Manganese peroxidase-dependent oxidation of glycolic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl Environ Microbiol 64 68-73. [Pg.146]

Root exudation of extraordinary high amounts of specific carboxy lutes (e.g ci-u-ate, malate. oxalate, pbytosiderophores) in response to nutritional deficiency stress or Al toxicity in some plant species cannot simply be attributed to diffusion processes. The controlled release of these compounds, involved in mobilization of mineral nutrients and in detoxification of Al. may be mediated by more specific mechanisms. Inhibitory effects by exogenous application of various anion chan-... [Pg.52]

Micales JA. Oxalate decarboxylase in the brown-rot wood decay fungus, Postia placenta. Mat U Org 1995 29 177. [Pg.194]

Pathway (d) in Fig. 9.3 provides a possible explanation for the efficiency of a combination of a reductant and a complex former in promoting fast dissolution of Fe(III) (hydr)oxydes. In this pathway, Fe(II) is the reductant. In the absence of a complex former, however, Fe2+ does not transfer electrons to the surface Fe(III) of a Fe(III) (hydr)oxide to any measurable apparent extent. The electron transfer occurs only in the presence of a suitable bridging ligand (e.g., oxalate). As illustrated in Fig. 9.3d, a ternary surface complex is formed and an electron transfer, presumably inner-sphere, occurs between the adsorbed Fe(II) and the surface Fe(III). This is followed by the rate-limiting detachment of the reduced surface iron. In this pathway, the concentration of Fe(U)aq remains constant while the concentration of dissolved Fe(III) increases thus, Fe(II)aq acts as a catalyst to produce Fe(II)(aq) from the dissolution of Fe(III)(hydr)oxides. [Pg.316]

Group VI Donors. Oxygen donor ligands. A new and more successful preparation of CIS- and tra s-K[Rh(ox)2(H20)2] has been reported, via the chromatographic separation of the acid hydrolysis products from Kj[Rh(ox)3],4j-H20. The u.v.-visible spectra of these complexes cast doubts on the purity of the samples previously described. An interesting feature of Rh -oxalate chemistry is the assertion that K3[Rh(ox)3],4 H20 actually exists as the partly unidentate K6[Rh(ox)3][Rh(ox)2(C204H)(OH)],8H20. This has now... [Pg.384]


See other pages where U oxalate is mentioned: [Pg.491]    [Pg.1966]    [Pg.2229]    [Pg.358]    [Pg.491]    [Pg.1966]    [Pg.2229]    [Pg.358]    [Pg.164]    [Pg.324]    [Pg.1146]    [Pg.13]    [Pg.195]    [Pg.605]    [Pg.267]    [Pg.641]    [Pg.602]    [Pg.434]    [Pg.224]    [Pg.351]    [Pg.352]    [Pg.356]    [Pg.443]    [Pg.154]    [Pg.176]    [Pg.304]    [Pg.719]    [Pg.62]    [Pg.89]    [Pg.132]    [Pg.1415]    [Pg.116]    [Pg.272]    [Pg.145]    [Pg.205]    [Pg.87]    [Pg.626]   
See also in sourсe #XX -- [ Pg.3 , Pg.166 ]




SEARCH



© 2024 chempedia.info