Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyrosine oxidase

Monooxygenase with L-tyrosine Oxidase with L-DOPA... [Pg.243]

The American workers studied liver tyrosine oxidase with the aid of 2,6-dichlorophenolindophenol, which destroys reduced ascorbic acid. The inhibition was only partly reversed by ascorbic acid, and glutathione was found also to be involved (928). Under certain conditions the dichloro-phenolindophenol could be stimulatory and was thought to replace yet another factor (927). (The work of the Japanese authors discussed below... [Pg.60]

The demonstration by Phillips and Laiigdon (1956) that the level of TPNH-cytochromc c reductase is increased in the livers of hyperthyroid rats and reduced in those of hypothyroid animals is of particular interest. Since the activity of this enzyme results in the production of triphospho-pyridiiie nucleotide (TPN), a cofactor required for many oxidative enzymes, this change is probably a direct reflection of the general over-all acceleration of oxidative processes, and, more specifically, of those which are TPN-linked. Decreased activity of lactic dehydrogenase (Vcstling and Knocpfelmacher, 1950) is compatible with the demonstrated ability of thyroxine to inhibit this enzyme in vitro (Wolff and Wolff, 1957 Radsma et al., 1957). Decreases in the in vivo activity of such enzymes as tyrosine oxidase, DOPA-decarboxylase, betaine-homocysteine transmethylase, and... [Pg.264]

Dopamine. Dopamine (DA) (2) is an intermediate in the synthesis of NE and Epi from tyrosine. DA is localized to the basal ganglia of the brain and is involved in the regulation of motor activity and pituitary hormone release. The actions of DA are terminated by conversion to dihydroxyphenylacetic acid (DOPAC) by monoamine oxidase-A and -B (MAO-A and -B) in the neuron following reuptake, or conversion to homovanillic acid (HVA) through the sequential actions of catechol-0-methyl transferase (COMT) and MAO-A and -B in the synaptic cleft. [Pg.540]

L-Tyrosine metabohsm and catecholamine biosynthesis occur largely in the brain, central nervous tissue, and endocrine system, which have large pools of L-ascorbic acid (128). Catecholamine, a neurotransmitter, is the precursor in the formation of dopamine, which is converted to noradrenaline and adrenaline. The precise role of ascorbic acid has not been completely understood. Ascorbic acid has important biochemical functions with various hydroxylase enzymes in steroid, dmg, andhpid metabohsm. The cytochrome P-450 oxidase catalyzes the conversion of cholesterol to bUe acids and the detoxification process of aromatic dmgs and other xenobiotics, eg, carcinogens, poUutants, and pesticides, in the body (129). The effects of L-ascorbic acid on histamine metabohsm related to scurvy and anaphylactic shock have been investigated (130). Another ceUular reaction involving ascorbic acid is the conversion of folate to tetrahydrofolate. Ascorbic acid has many biochemical functions which affect the immune system of the body (131). [Pg.21]

Fig. 2. Biosynthetic pathway for epinephrine, norepinephrine, and dopamine. The enzymes cataly2ing the reaction are (1) tyrosine hydroxylase (TH), tetrahydrobiopterin and O2 are also involved (2) dopa decarboxylase (DDC) with pyridoxal phosphate (3) dopamine-P-oxidase (DBH) with ascorbate, O2 in the adrenal medulla, brain, and peripheral nerves and (4) phenethanolamine A/-methyltransferase (PNMT) with. Cadenosylmethionine in the adrenal... Fig. 2. Biosynthetic pathway for epinephrine, norepinephrine, and dopamine. The enzymes cataly2ing the reaction are (1) tyrosine hydroxylase (TH), tetrahydrobiopterin and O2 are also involved (2) dopa decarboxylase (DDC) with pyridoxal phosphate (3) dopamine-P-oxidase (DBH) with ascorbate, O2 in the adrenal medulla, brain, and peripheral nerves and (4) phenethanolamine A/-methyltransferase (PNMT) with. Cadenosylmethionine in the adrenal...
Trace Amines. Figure 1 The main routes of trace amine metabolism. The trace amines (3-phenylethylamine (PEA), p-tyramine (TYR), octopamine (OCT) and tryptamine (TRP), highlighted by white shading, are each generated from their respective precursor amino acids by decarboxylation. They are rapidly metabolized by monoamine oxidase (MAO) to the pharmacologically inactive carboxylic acids. To a limited extent trace amines are also A/-methylated to the corresponding secondary amines which are believed to be pharmacologically active. Abbreviations AADC, aromatic amino acid decarboxylase DBH, dopamine b-hydroxylase NMT, nonspecific A/-methyltransferase PNMT, phenylethanolamine A/-methyltransferase TH, tyrosine hydroxylase. [Pg.1219]

Pyridoxamine phosphate serves as a coenzyme of transaminases, e.g., lysyl oxidase (collagen biosynthesis), serine hydroxymethyl transferase (Cl-metabolism), S-aminolevulinate synthase (porphyrin biosynthesis), glycogen phosphoiylase (mobilization of glycogen), aspartate aminotransferase (transamination), alanine aminotransferase (transamination), kynureninase (biosynthesis of niacin), glutamate decarboxylase (biosynthesis of GABA), tyrosine decarboxylase (biosynthesis of tyramine), serine dehydratase ((3-elimination), cystathionine 3-synthase (metabolism of methionine), and cystathionine y-lyase (y-elimination). [Pg.1290]

Neural cells convert tyrosine to epinephrine and norepinephrine (Figure 31—5). While dopa is also an intermediate in the formation of melanin, different enzymes hydroxylate tyrosine in melanocytes. Dopa decarboxylase, a pyridoxai phosphate-dependent enzyme, forms dopamine. Subsequent hydroxylation by dopamine P-oxidase then forms norepinephrine. In the adrenal medulla, phenylethanolamine-A -methyltransferase uti-hzes S-adenosyhnethionine to methylate the primary amine of norepinephrine, forming epinephrine (Figure 31-5). Tyrosine is also a precursor of triiodothyronine and thyroxine (Chapter 42). [Pg.267]

The deamination of primary amines such as phenylethylamine by Escherichia coli (Cooper et al. 1992) and Klebsiella oxytoca (Flacisalihoglu et al. 1997) is carried out by an oxidase. This contains copper and topaquinone (TPQ), which is produced from tyrosine by dioxygenation. TPQ is reduced to an aminoquinol that in the form of a Cu(l) radical reacts with O2 to form H2O2, Cu(ll), and the imine. The mechanism has been elucidated (Wihnot et al. 1999), and involves formation of a Schiff base followed by hydrolysis in reactions that are formally analogous to those involved in pyridoxal-mediated transamination. [Pg.185]

Rogers MS, Dooley DM. 2001. Posttranslationally modihed tyrosines from galactose oxidase and cytochrome c oxidase. Adv Protein Chem 58 387. [Pg.691]

Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62). Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62).

See other pages where Tyrosine oxidase is mentioned: [Pg.256]    [Pg.90]    [Pg.807]    [Pg.807]    [Pg.61]    [Pg.11]    [Pg.269]    [Pg.164]    [Pg.256]    [Pg.90]    [Pg.807]    [Pg.807]    [Pg.61]    [Pg.11]    [Pg.269]    [Pg.164]    [Pg.410]    [Pg.308]    [Pg.355]    [Pg.1199]    [Pg.43]    [Pg.438]    [Pg.788]    [Pg.790]    [Pg.1067]    [Pg.1498]    [Pg.240]    [Pg.198]    [Pg.548]    [Pg.168]    [Pg.169]    [Pg.106]    [Pg.643]    [Pg.675]    [Pg.761]    [Pg.801]    [Pg.30]    [Pg.33]    [Pg.64]    [Pg.329]    [Pg.20]    [Pg.191]    [Pg.192]    [Pg.84]    [Pg.323]    [Pg.29]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Galactose oxidase tyrosine-cysteine cofactor

Tyrosine phenol oxidase substrate

Tyrosine-DOPA oxidase

© 2024 chempedia.info