Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyrosine hydroxylase synthesis

Levi-Montalcini, R., Aloe, L., Mugnaini, E., Oesch, F. and Teioenen, H. (1975) Nerve growth factor induces volume increase and enhances tyrosine hydroxylase synthesis in chemically axotomized sympathetic ganglia of newborn rats. Proc. Natl. Acad. Sci. USA 72 595-599. [Pg.167]

The neurotransmitter must be present in presynaptic nerve terminals and the precursors and enzymes necessary for its synthesis must be present in the neuron. For example, ACh is stored in vesicles specifically in cholinergic nerve terminals. It is synthesized from choline and acetyl-coenzyme A (acetyl-CoA) by the enzyme, choline acetyltransferase. Choline is taken up by a high affinity transporter specific to cholinergic nerve terminals. Choline uptake appears to be the rate-limiting step in ACh synthesis, and is regulated to keep pace with demands for the neurotransmitter. Dopamine [51 -61-6] (2) is synthesized from tyrosine by tyrosine hydroxylase, which converts tyrosine to L-dopa (3,4-dihydroxy-L-phenylalanine) (3), and dopa decarboxylase, which converts L-dopa to dopamine. [Pg.517]

The dopamine is then concentrated in storage vesicles via an ATP-dependent process. Here the rate-limiting step appears not to be precursor uptake, under normal conditions, but tyrosine hydroxylase activity. This is regulated by protein phosphorylation and by de novo enzyme synthesis. The enzyme requites oxygen, ferrous iron, and tetrahydrobiopterin (BH. The enzymatic conversion of the precursor to the active agent and its subsequent storage in a vesicle are energy-dependent processes. [Pg.517]

Catecholamine biosynthesis begins with the uptake of the amino acid tyrosine into the sympathetic neuronal cytoplasm, and conversion to DOPA by tyrosine hydroxylase. This enzyme is highly localized to the adrenal medulla, sympathetic nerves, and central adrenergic and dopaminergic nerves. Tyrosine hydroxylase activity is subject to feedback inhibition by its products DOPA, NE, and DA, and is the rate-limiting step in catecholamine synthesis the enzyme can be blocked by the competitive inhibitor a-methyl-/)-tyrosine (31). [Pg.357]

The dopamine system constitutes the cellular and biochemical network that is involved in the synthesis, release, and response to dopamine. In general, this involves cells that express significant levels of tyrosine hydroxylase (TH) and limited amounts of dopamine (3-hydioxylase [1]. Dopamine-responsive cells express receptors specifically activated by this neurotransmitter, which are known as dopamine Dl, D2, D3, D4, and D5 receptors [2, 3]. [Pg.437]

As the rate-limiting enzyme, tyrosine hydroxylase is regulated in a variety of ways. The most important mechanism involves feedback inhibition by the catecholamines, which compete with the enzyme for the pteridine cofactor. Catecholamines cannot cross the blood-brain barrier hence, in the brain they must be synthesized locally. In certain central nervous system diseases (eg, Parkinson s disease), there is a local deficiency of dopamine synthesis. L-Dopa, the precursor of dopamine, readily crosses the blood-brain barrier and so is an important agent in the treatment of Parkinson s disease. [Pg.446]

The turnover rate of a transmitter can be calculated from measurement of either the rate at which it is synthesised or the rate at which it is lost from the endogenous store. Transmitter synthesis can be monitored by administering [ H]- or [ " C]-labelled precursors in vivo these are eventually taken up by neurons and converted into radiolabelled product (the transmitter). The rate of accumulation of the radiolabelled transmitter can be used to estimate its synthesis rate. Obviously, the choice of precursor is determined by the rate-limiting step in the synthetic pathway for instance, when measuring catecholamine turnover, tyrosine must be used instead of /-DOPA which bypasses the rate-limiting enzyme, tyrosine hydroxylase. [Pg.82]

Tyrosine is converted to dopa by the cytoplasmic enzyme tyrosine hydroxylase. This is the rate-limiting step 5 x 10 M) in DA synthesis, it requires molecular O2 and Fe + as well as tetrahydropterine (BH-4) cofactor and is substrate-specific. It can be inhibited by a-methyl-p-tyrosine, which depletes the brain of both DA and NA and it is particularly important for the maintenance of DA synthesis. Since the levels of tyrosine are above the for tyrosine hydroxylase the enzyme is normally saturated and so it is not possible to increase DA levels by giving tyrosine. [Pg.141]

It is possible to deplete the brain of both DA and NA by inhibiting tyrosine hydroxylase but while NA may be reduced independently by inhibiting dopamine jS-hydroxylase, the enzyme that converts DA to NA, there is no way of specifically losing DA other than by destruction of its neurons (see below). In contrast, it is easier to augment DA than NA by giving the precursor dopa because of its rapid conversion to DA and the limit imposed on its further synthesis to NA by the restriction of dopamine S-hydroxylase to the vesicles of NA terminals. The activity of the rate-limiting enzyme tyrosine hydroxylase is controlled by the cytoplasmic concentration of DA (normal end-product inhibition), presynaptic dopamine autoreceptors (in addition to their effect on release) and impulse flow, which appears to increase the affinity of tyrosine hydroxylase for its tetrahydropteridine co-factor (see below). [Pg.141]

Generally the concentration of DA remains remarkably constant irrespective of the level of neuronal activity. One reason for this is that nerve stimulation increases tyrosine hydroxylase activity and DA synthesis. It is thought that tyrosine hydroxylase can exist in two forms with low and high affinities for its tetrahydropteredine co-factor (BEI-4) and that nerve traffic increases the high-affinity fraction. [Pg.143]

The pathway for synthesis of the catecholamines dopamine, noradrenaline and adrenaline, illustrated in Fig. 8.5, was first proposed by Hermann Blaschko in 1939 but was not confirmed until 30 years later. The amino acid /-tyrosine is the primary substrate for this pathway and its hydroxylation, by tyrosine hydroxylase (TH), to /-dihydroxyphenylalanine (/-DOPA) is followed by decarboxylation to form dopamine. These two steps take place in the cytoplasm of catecholaminereleasing neurons. Dopamine is then transported into the storage vesicles where the vesicle-bound enzyme, dopamine-p-hydroxylase (DpH), converts it to noradrenaline (see also Fig. 8.4). It is possible that /-phenylalanine can act as an alternative substrate for the pathway, being converted first to m-tyrosine and then to /-DOPA. TH can bring about both these reactions but the extent to which this happens in vivo is uncertain. In all catecholamine-releasing neurons, transmitter synthesis in the terminals greatly exceeds that in the cell bodies or axons and so it can be inferred... [Pg.167]

The first step in the synthesis of 5-HT is hydroxylation of the essential amino acid, tryptophan, by the enzyme tryptophan hydroxylase (Fig. 9.4). This enzyme has several features in common with tyrosine hydroxylase, which converts tyrosine to /-DOPA in... [Pg.190]

Figure 13.7 Synthesis and structure of the trace amines phenylethylamine, /)-tyramine and tryptamine. These are all formed by decarboxylation rather than hydroxylation of the precursors of the established monoamine neurotransmitters, dopamine and 5-HT. (1) Decarboxylation by aromatic L-amino acid decarboxylase (2) phenylaline hydroxylase (3) tyrosine hydroxylase (4) tryptophan hydroxylase... Figure 13.7 Synthesis and structure of the trace amines phenylethylamine, /)-tyramine and tryptamine. These are all formed by decarboxylation rather than hydroxylation of the precursors of the established monoamine neurotransmitters, dopamine and 5-HT. (1) Decarboxylation by aromatic L-amino acid decarboxylase (2) phenylaline hydroxylase (3) tyrosine hydroxylase (4) tryptophan hydroxylase...
Non-neuronal transplants such as adrenal chromaffin cells have been tried but do not survive although some L-dopa-producing cell lines (e.g. PC 12) or glomus cells of the carotid body do produce DA in vivo and may provide the equivalent of a continuous infusion of dopa (and DA) directly into the brain. Expression of tyrosine hydroxylase to promote dopa and DA synthesis in striatal cells by direct gene transfer in vivo or in cultures for subsequent transplanting, may also be possible. (See Dunnett and Bjorklund 1999 for a review of these approaches.)... [Pg.319]

There is no evidence of a general overactivity in DA function in schizophrenic patients. Plasma prolactin is not reduced, so the DA inhibitory control of its release is normal there is no recorded increase in DA turnover as CSF and plasma levels of its major metabolite HVA are normal and dyskinesias, which would reflect increased DA activity, are rare. PM studies have shown no consistent increases in DA brain levels, although some reports show an increase in the left amygdala, or in the activity of enzymes involved in its synthesis (tyrosine hydroxylase) or metabolism (MAO). For a review of the neurochemistry see Reynolds (1995). [Pg.355]

Kogan, F.J., and Gibb, J.W. Influence of dopamine synthesis on methamphetamine-induced changes in striatal and adrenal tyrosine hydroxylase activity. N-S Arch Pharmacol 310 185-187, 1979. [Pg.177]

Nagatsu T., Levitt M., Udenfriend S. (1964). Tyrosine hydroxylase, the initial step in norepinephrine synthesis. J. Biol. Chem. 239, 2910 17. [Pg.217]

Regulation of neurotransmitter synthesis tyrosine hydroxylase. This protein is the rate-limiting enzyme in... [Pg.403]

Dopamine synthesis in dopaminergic terminals (Fig. 46-3) requires tyrosine hydroxylase (TH) which, in the presence of iron and tetrahydropteridine, oxidizes tyrosine to 3,4-dihydroxyphenylalanine (levodopa.l-DOPA). Levodopa is decarboxylated to dopamine by aromatic amino acid decarboxylase (AADC), an enzyme which requires pyri-doxyl phosphate as a coenzyme (see also in Ch. 12). [Pg.765]

These patients suffer from a genetic defect of dopamine synthesis, caused by reduced GTP cyclohydrolase activity. This enzyme is rate-limiting in the biosynthesis of tetra-hydrobiopterin, a cofactor of the dopamine-synthesizing enzyme tyrosine hydroxylase (see Fig. 40-2). [Pg.775]

The rate-limiting step in the synthesis of the catecholamines from tyrosine is tyrosine hydroxylase, so that any drug or substance which can reduce the activity of this enzyme, for example by reducing the concentration of the tetrahydropteridine cofactor, will reduce the rate of synthesis of the catecholamines. Under normal conditions tyrosine hydroxylase is maximally active, which implies that the rate of synthesis of the catecholamines is not in any way dependent on the dietary precursor tyrosine. Catecholamine synthesis may be reduced by end product inhibition. This is a process whereby catecholamine present in the synaptic cleft, for example as a result of excessive nerve stimulation, will reduce the affinity of the pteridine cofactor for tyrosine hydroxylase and thereby reduce synthesis of the transmitter. The experimental drug alpha-methyl-para-tyrosine inhibits the rate-limiting step by acting as a false substrate for the enzyme, the net result being a reduction in the catecholamine concentrations in both the central and peripheral nervous systems. [Pg.65]

Figure 2.16. Pathways for the synthesis and metabolism of the catecholamines. A=phenylalanine hydroxylase+pteridine cofactor+Oj B tyrosine hydroxylase+ tetrahydropteridme+Fe+ +Oj C=dopa decarboxylase+pyridoxal phosphate D= dopamine beta-oxidase+ascorbate phosphate+Cu+ +Oj E=phenylethanolamine N-methyltransferase+S-adenosylmethionine l=monoamine oxidase and aldehyde dehydrogenase 2=catechol-0-methyltransferase+S-adenosylmethionine. Figure 2.16. Pathways for the synthesis and metabolism of the catecholamines. A=phenylalanine hydroxylase+pteridine cofactor+Oj B tyrosine hydroxylase+ tetrahydropteridme+Fe+ +Oj C=dopa decarboxylase+pyridoxal phosphate D= dopamine beta-oxidase+ascorbate phosphate+Cu+ +Oj E=phenylethanolamine N-methyltransferase+S-adenosylmethionine l=monoamine oxidase and aldehyde dehydrogenase 2=catechol-0-methyltransferase+S-adenosylmethionine.
Free tryptophan is transported into the brain and nerve terminal by an active transport system which it shares with tyrosine and a number of other essential amino acids. On entering the nerve terminal, tryptophan is hydroxylated by tryptophan hydroxylase, which is the rate-limiting step in the synthesis of 5-HT. Tryptophan hydroxylase is not bound in the nerve terminal and optimal activity of the enzyme is only achieved in the presence of molecular oxygen and a pteridine cofactor. Unlike tyrosine hydroxylase, tryptophan hydroxylase is not usually saturated by its substrate. This implies that if the brain concentration rises then the rate of 5-HT synthesis will also increase. Conversely, the rate of 5-HT synthesis will decrease following the administration of experimental drugs such as para-chlorophenylalanine, a synthetic amino acid which irreversibly inhibits the enzyme. Para-chloramphetamine also inhibits the activity of this enzyme, but this experimental drug also increases 5-HT release and delays its reuptake thereby leading to the appearance of the so-called "serotonin syndrome", which in animals is associated with abnormal movements, body posture and temperature. [Pg.71]

Approximately 30 years ago, Schildkraut postulated that noradrenaline may play a pivotal role in the aetiology of depression. Evidence in favour of this hypothesis was provided by the observation that the antihypertensive drug reserpine, which depletes both the central and peripheral vesicular stores of catecholamines such as noradrenaline, is likely to precipitate depression in patients in remission. The experimental drug alpha-methyl-paratyrosine that blocks the synthesis of noradrenaline by inhibiting the rate-limiting enzyme tyrosine hydroxylase was also shown to precipitate depression in patients during remission. While such findings are only indirect indicators that noradrenaline plays an important role in human behaviour, and may be defective in depression, more direct evidence is needed to substantiate the hypothesis. The most obvious approach would be to determine the concentration of noradrenaline and/or its major central... [Pg.155]

The major routes for the synthesis and metabolism of noradrenaline in adrenergic nerves [375], together with the names of the enzymes concerned, are shown in Figure 3.1. Under normal conditions the rate controlling step in noradrenaline synthesis is the first, and the tissue noradrenaline content can be markedly lowered by inhibition of tyrosine hydroxylase [376]. Tissue noradrenaline levels can also be lowered, but to a lesser extent, by inhibition of dopamine-(3-oxidase [377, 378]. However, the noradrenaline depletion produced by guanethidine is unlikely to result from inhibition of synthesis, since intra-cisternal injection of guanethidine does not prevent the accumulation of noradrenaline which follows brain monoamine oxidase inhibition, even though it does cause depletion of brain noradrenaline [323]. [Pg.188]

Synthesis of catecholamines from Tyr begins with hydroxylation of the Tyr ring catalyzed by tyrosine hydroxylase. [Pg.128]

Synthesis of norepinephrine begins with the amino acid tyrosine, which enters the neuron by active transport, perhaps facilitated by a permease. In the neuronal cytosol, tyrosine is converted by the enzyme tyrosine hydroxylase to dihydroxyphenylalanine (dopa), which is converted to dopamine by the enzyme aromatic L-amino acid decarboxylase, sometimes termed dopa-decarboxylase. The dopamine is actively transported into storage vesicles, where it is converted to norepinephrine (the transmitter) by dopamine (3-hydroxylase, an enzyme within the storage vesicle. [Pg.90]

Metyrosine (Demser) is an example of this class of drugs. Chemically, metyrosine is a-methyl tyrosine. The drug blocks the action of tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of catecholamines. Unlike a-methyldopa, metyrosine is not itself incorporated into the catecholamine synthetic pathway. The ultimate action of the drug is to decrease the production of catecholamines. [Pg.235]

Corticosteroids also affect adrenomeduUary function by increasing epinephrine production the mechanism is exertion of a stimulatory action on two of the enzymes that regulate catecholamine synthesis, tyrosine hydroxylase, the rate-Umiting enzyme, and phenyl-ethanolamine Af-methyltransferase, which catalyzes the conversion of norepinephrine to epinephrine. Steroids also influence the metabolism of circulating catecholamines by inhibiting their uptake from the circulation by noimeuronal tissues (i.e., extraneuronal uptake see Chapter 9). This effect of corticoids may explain their permissive action in potentiating the hemodynamic effects of circulating catecholamines. [Pg.691]


See other pages where Tyrosine hydroxylase synthesis is mentioned: [Pg.553]    [Pg.553]    [Pg.358]    [Pg.43]    [Pg.162]    [Pg.788]    [Pg.1170]    [Pg.184]    [Pg.32]    [Pg.33]    [Pg.30]    [Pg.398]    [Pg.510]    [Pg.595]    [Pg.891]    [Pg.892]    [Pg.29]    [Pg.75]    [Pg.245]    [Pg.186]    [Pg.167]    [Pg.225]   
See also in sourсe #XX -- [ Pg.46 , Pg.47 ]

See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Tyrosine hydroxylase catecholamine synthesis

Tyrosine synthesis

Tyrosines tyrosine hydroxylase

© 2024 chempedia.info