Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tubulin in microtubules

Colchicine Blue/440 Blue/475 Green/530 Tubulin in microtubules 1=1 o7 I = 7 x10 6... [Pg.133]

Fig. 3. Immunofluorescence localization of tubulin in microtubules in Swiss 3T3 cultured fibroblasts. Swiss 3T3 cells were fixed in glutaraldehyde followed by treatment with sodium borohydride (4). Tubulin was detected using a rat monoclonal antitubulin antibody (YLl/2), followed by goat antirat IgG conjugated to rhodamine, all steps in the continuous presence of 0.1% saponin. Note the individual microtubules visible under the dark nuclear region (bar = 4 im). Fig. 3. Immunofluorescence localization of tubulin in microtubules in Swiss 3T3 cultured fibroblasts. Swiss 3T3 cells were fixed in glutaraldehyde followed by treatment with sodium borohydride (4). Tubulin was detected using a rat monoclonal antitubulin antibody (YLl/2), followed by goat antirat IgG conjugated to rhodamine, all steps in the continuous presence of 0.1% saponin. Note the individual microtubules visible under the dark nuclear region (bar = 4 im).
The influences of herbicides on cell division fall into two classes, ie, dismption of the mitotic sequence and inhibition of mitotic entry from interphase (G, S, G2). If ceU-cycle analyses indicate increases in abnormal mitotic figures, combined with decreases in one or more of the normal mitotic stages, the effect is upon mitosis. Mitotic effects usually involve the microtubules of the spindle apparatus in the form of spindle depolymerization, blocked tubulin synthesis, or inhibited microtubule polymerization (163). Alkaloids such as colchicine [64-86-8J,viahla.stiae [865-21-4] and vincristine [57-22-7] dismpt microtubule function (164). Colchicine prevents microtubule formation and promotes disassembly of those already present. Vinblastine and vincristine also bind to free tubulin molecules, precipitating crystalline tubulin in the cytoplasm. The capacities of these dmgs to interfere with mitotic spindles, blocking cell division, makes them useful in cancer treatment. [Pg.46]

Tubulin is a major component of the cellular cytoskele-ton. Tubulin polymers (microtubules) are important for cell division (mitotic spindle) and the chemotaxis and phagocytosis of neutrophils. Prevention of tubulin polymerisation by colchicine accounts for the therapeutic effects of this drug in acute gouty arthritis and its anti-mitotic effects. [Pg.1247]

Several groups of drugs that bind to tubulin at different sites interfere with its polymerization into microtubules. These drugs are of experimental and clinical importance (Bershadsky and Vasiliev, 1988). For example, colchicine, an alkaloid derived from the meadow saffron plant Colchicum autumnale or Colchicum speciosum), is the oldest and most widely studied of these drugs. It forms a molecular complex with tubulin in the cytosol pool and prevents its polymerization into microtubules. Other substances such as colcemid, podophyllotoxin, and noco-dazole bind to the tubulin molecule at the same site as colchicine and produce a similar effect, albeit with some kinetic differences. Mature ciliary microtubules are resistant to colchicine, whereas those of the mitotic spindle are very sensitive. Colchicine and colcemid block cell division in metaphase and are widely used in cytogenetic studies of cultured cells to enhance the yield of metaphase plate chromosomes. [Pg.21]

Another drug is taxol, which is extracted from the bark of the Pacific yew tree, Taxus brevijolia. Unlike colchicine and the vinca alkaloids, taxol binds tightly to microtubules and stabilizes them against depolymerization by Ca. It also enhances the rate and yield of microtubule assembly, thereby decreasing the amount of soluble tubulin in the cytosol pool. Again, the overall effect of taxol is to arrest dividing cells in mitosis. Taxol is used in cancer chemotherapy. [Pg.21]

The above theory can be extended to deal with other more complex cases. For example, the two ends of a biopolymer need not behave identically, and microtubules, as noted earlier, are helical polymers of asymmetric protomer units. Thus, two sets of on- and off-constants might be necessary. In other cases, such as in the polymerization of tubulin in the presence of tubulin—colchicine complex (Sternlicht and Ringel, 1979 Sternlicht et al., 1980), there may be the need to consider copolymerization possibilities. [Pg.170]

Finally, one should recognize that determinations of the critical concentration depend wholly on the validity of the equilibrium or steady-state assumptions. If a stable end point for prdtomer-polymer coexistence is not attained, then kinetic factors affect the observed behavior. With the well recognized tendency of tubulin to lose its ability to engage in assembly reactions upon storage even at low temperature, and with the presence of various nucleotide hydrolases and transphosphorylases in microtubule protein, such kinetic effects are a serious problem. [Pg.190]

The structure-function relationship of the indole-indoline binary alkaloids was relegated to obscurity until the recent achievement of methodologies for their complete syntheses (see Chapter 2, this volume). Our work with C-20 congeners of VBL has established that the complex interactions between this molecule and tubulin or microtubules can be modified by structural alteration. The various, concentration-dependent reactions of VBL with the microtubule system in vitro are sensitive to subtle modifications at a single molecular locus. In addition, these reactions are distinctive on a mechanistic level as seen from the unique activity profiles of most of our C-20 alkyl congeners. At first light, we can look toward the future with secured optimism. [Pg.144]

Zhang, Y., Li, N., Caron, C., Matthias, G., Hess, D., Khochbin, S. and Matthias, P. (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. The EMBO Journal, 22, 1168-1179. [Pg.249]

Figure 1. Top Turbidity, measured at 350 nm, as a function of microtubule polymer mass concentration (expressed as mg/mL polymerized tubulin). Tubulin solutions of varying concentrations were polymerized until they reached stable plateau values in a Cary 118C spectrophotometer. Each sample was then transferred to an ultracentrifuge tube, and microtubules were pelleted, separated from the unpolymerized tubulin in the supernatant fraction, and then resuspended for protein concentration determination. The corresponding turbidity and polymer mass concentrations are plotted here. Bottom Time-course of tubulin polymerization assayed by turbidity.Repro-duced from MacNeal and Purich with permission from the American Society for Biochemistry and Molecular Biology. Figure 1. Top Turbidity, measured at 350 nm, as a function of microtubule polymer mass concentration (expressed as mg/mL polymerized tubulin). Tubulin solutions of varying concentrations were polymerized until they reached stable plateau values in a Cary 118C spectrophotometer. Each sample was then transferred to an ultracentrifuge tube, and microtubules were pelleted, separated from the unpolymerized tubulin in the supernatant fraction, and then resuspended for protein concentration determination. The corresponding turbidity and polymer mass concentrations are plotted here. Bottom Time-course of tubulin polymerization assayed by turbidity.Repro-duced from MacNeal and Purich with permission from the American Society for Biochemistry and Molecular Biology.
Low-/c t GTPase in tubulin polymerization, MICROTUBULE ASSEMBLY KINETICS LUCIFERASE D(-)-Luciferin,... [Pg.757]

Although taxanes bind to p-tubulin promoting microtubule polymerization and stabilization of the spindle complex, they serve to cause a sustained mitotic block at the metaphase/anaphase boundary. This block will occur at a lower concentration than that which is required to increase the microtubule mass (10). However, it is not completely clear how this interaction with microtubules translates into cell death. Morphologic features and the characteristic DNA fragmentation patterns seen in the setting of apoptosis have been documented in tumor cells after therapy with taxanes (10). These observations are accompanied by the phosphorylation of Bcl-2, an anti-apoptotic protein, changing the cellular balance between Bax and Bcl-2 to a status that favors apoptosis (11). [Pg.66]

Vinflumine (Javlor ) is a second-generation Vinca alkaloid. It is more active than the nonfluorinated parent compound (vinorelbine) in several cancers (Figure 8.7). Vinflumine is currently in Phase III clinical trials as a chemotherapeutic agent against a variety of cancers (metastasic breast cancer, small cell lung cancer, and bladder cancer). This drug inhibits mitotic assembly, via inhibition of tubulin polymerization in microtubules, a major element of the cytoskeleton. Effects of fluorine substimtion on tubulin affinity or on metabolism are not responsible for the increased efficiency and decreased toxicity. The synthesis of vinflumine is reported in Chapter 4. ... [Pg.284]

The best known drugs acting as antimitotics are the vinca alkaloids, vincristine (7.90) and vinblastine (7.91). They are very complex indole derivatives that nevertheless have been synthesized. Both are quite effective in various leukemias and in Hodgkin s lymphoma, but show considerable neurotoxicity. Vinblastine and vincristine bind specifically to the microtubular protein tubulin in dimeric form, precipitating depolymerization of the microtubules and functionally acting as a mitotic poison. Vinorelbine (7.92) is a semisynthetic vinca alkaloid functionally identical to vinblastine. [Pg.455]


See other pages where Tubulin in microtubules is mentioned: [Pg.9]    [Pg.260]    [Pg.1113]    [Pg.52]    [Pg.193]    [Pg.1845]    [Pg.9]    [Pg.260]    [Pg.1113]    [Pg.52]    [Pg.193]    [Pg.1845]    [Pg.46]    [Pg.535]    [Pg.538]    [Pg.6]    [Pg.577]    [Pg.125]    [Pg.127]    [Pg.751]    [Pg.201]    [Pg.175]    [Pg.138]    [Pg.139]    [Pg.148]    [Pg.153]    [Pg.162]    [Pg.167]    [Pg.175]    [Pg.187]    [Pg.205]    [Pg.206]    [Pg.245]    [Pg.141]    [Pg.473]    [Pg.473]    [Pg.300]    [Pg.110]    [Pg.250]   
See also in sourсe #XX -- [ Pg.989 , Pg.990 ]




SEARCH



Microtubules

Tubulin/microtubules

© 2024 chempedia.info