Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Troponin proteins

Tropomyosin, troponin Proteins found together with actin in muscle fibers. [Pg.930]

Actin is a one-chain globular protein with a relative molecular weight of 43.5 kDa (G-actin, where G stands for globular). This monomeric form polymerises to yield a fibrous form of actin (F-actin, where stands F for fibrous). The units of G-actin are organised into a heKx composed of two monomers. This polymer binds to the protein tropomyosin (relative molecular weight 70 kDa), which has a similar structure to the fibrillar part of myosin (two unequal polypeptide chains, essentially curled into an a-hehx). The actin is further connected to the regulatory troponins proteins (troponin complexes C, I and T) with relative molecular weights of 18,24 and 37 kDa, respectively. [Pg.60]

Proteins can be broadly classified into fibrous and globular. Many fibrous proteins serve a stmctural role (11). CC-Keratin has been described. Fibroin, the primary protein in silk, has -sheets packed one on top of another. CoUagen, found in connective tissue, has a triple-hehcal stmcture. Other fibrous proteins have a motile function. Skeletal muscle fibers are made up of thick filaments consisting of the protein myosin, and thin filaments consisting of actin, troponin, and tropomyosin. Muscle contraction is achieved when these filaments sHde past each other. Microtubules and flagellin are proteins responsible for the motion of ciUa and bacterial dageUa. [Pg.211]

Calcium is the trigger behind the muscle contraction process (24,25). Neural stimulation activates the release of stored Ca(Il) resulting in a dramatic increase in free calcium ion levels. The subsequent binding of Ca(Il) resulting in a dramatic increase in free calcium ion levels. The subsequent binding of Ca(Il) to the muscle protein troponin C provides the impetus for a conformational change in the troponin complex and sets off successive events resulting in muscle contraction. [Pg.409]

Table 2.2 Amino acid sequences of calcium-binding EF motifs in three different proteins Pamalbumin VKKAFAI I DQDKSGFIEEDELKLFLQNF Calmodulin FKEAFSLFDKDGDGT I TTKELGTVMRSL Troponin-C LADCFR I FDKNADGF I D lEELGE I LRAT... Table 2.2 Amino acid sequences of calcium-binding EF motifs in three different proteins Pamalbumin VKKAFAI I DQDKSGFIEEDELKLFLQNF Calmodulin FKEAFSLFDKDGDGT I TTKELGTVMRSL Troponin-C LADCFR I FDKNADGF I D lEELGE I LRAT...
Herzberg, O., James, M.N.G. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 313 653-659, 1985. [Pg.33]

Nonrepetitive but well-defined structures of this type form many important features of enzyme active sites. In some cases, a particular arrangement of coil structure providing a specific type of functional site recurs in several functionally related proteins. The peptide loop that binds iron-sulfur clusters in both ferredoxin and high potential iron protein is one example. Another is the central loop portion of the E—F hand structure that binds a calcium ion in several calcium-binding proteins, including calmodulin, carp parvalbumin, troponin C, and the intestinal calcium-binding protein. This loop, shown in Figure 6.26, connects two short a-helices. The calcium ion nestles into the pocket formed by this structure. [Pg.182]

In addition to the major proteins of striated muscle (myosin, actin, tropomyosin, and the troponins), numerous other proteins play important roles in the maintenance of muscle structure and the regulation of muscle contraction. Myosin and actin together account for 65% of the total muscle protein, and tropomyosin and the troponins each contribute an additional 5% (Table 17.1). The other regulatory and structural proteins thus comprise approximately 25% of the myofibrillar protein. The regulatory proteins can be classified as either myosin-associated proteins or actin-associated proteins. [Pg.546]

Troponin C Troponin I Troponin T Minor M protein 18 21 31 165 2 M line Ca binding Inhibits actin-myosin interaction Binds to tropomyosin Binds to myosin... [Pg.547]

Troponin specifically regulates muscle contraction. Ca2+-Binding Proteins... [Pg.1243]

Muscle contraction is initiated by a signal from a motor nerve. This triggers an action potential, which is propagated along the muscle plasma membrane to the T-tubule system and the sarcotubular reticulum, where a sudden large electrically excited release of Ca " into the cytosol occurs. Accessory proteins closely associated with actin (troponins T, I, and C) together with tropomyosin mediate the Ca -dependent motor command within the sarcomere. Other accessory proteins (titin, nebulin, myomesin, etc.) serve to provide the myofibril with both stability... [Pg.32]

Tropomyosin is thought to lie in the groove formed between the associated actin strands. The sites at which the myosin crossbridges attach are affected by the relationship between tropomyosin and the actin strands. The role of tropomyosin in smooth muscle is completely undefined while in striated muscle it is clearly involved in the activation of contraction. The difference is made clear by the absence from smooth muscle of the protein, troponin, which in striated muscle provides the binding site for the triggering calcium. [Pg.170]

Both the thick and thin filaments contain other proteins. For example, the thick filament contains titin (molecular weight about 3,000,000) and the thin filament contains nebulin (although not in cardiac muscle), and the regulatory proteins troponin (molecular weight about 33,000) and tropomyosin (molecular weight about 70,000). Nebulin and titin are thought to be ruler proteins, that is, they determine the overall length of the thin and the thick filament, respectively. The... [Pg.208]

The thin filament (about 7 nm in diameter) fies in the 1 band and extends into the A band but not into its H zone (Figure 49-2). Thin filaments contain the proteins actin, tropomyosin, and troponin (Figure 49-3). In the A band, the thin filaments are arranged around the thick (myosin) filament as a secondary hexagonal array. Each thin filament lies symmetrically between three thick filaments (Figure 49-2, center mid cross-... [Pg.557]

Figure 49-3. Schematic representation of the thin fiiament, showing the spatiai configuration of its three major protein components actin, myosin, and tropomyosin. The upper panei shows individual molecules of G-actin. The middle panel shows actin monomers assembled into F-actin. Individual molecules of tropomyosin (two strands wound around one another) and of troponin (made up of its three subunits) are also shown. The lower panel shows the assembled thin filament, consisting of F-actin, tropomyosin, and the three subunits of troponin (TpC, Tpl, andTpT). Figure 49-3. Schematic representation of the thin fiiament, showing the spatiai configuration of its three major protein components actin, myosin, and tropomyosin. The upper panei shows individual molecules of G-actin. The middle panel shows actin monomers assembled into F-actin. Individual molecules of tropomyosin (two strands wound around one another) and of troponin (made up of its three subunits) are also shown. The lower panel shows the assembled thin filament, consisting of F-actin, tropomyosin, and the three subunits of troponin (TpC, Tpl, andTpT).
In striated muscle, there are two other proteins that are minor in terms of their mass but important in terms of their function. Tropomyosin is a fibrous molecule that consists of two chains, alpha and beta, that attach to F-actin in the groove between its filaments (Figure 49-3). Tropomyosin is present in all muscular and muscle-fike structures. The troponin complex is unique to striated muscle and consists of three polypeptides. Troponin T (TpT) binds to tropomyosin as well as to the other two troponin components. Troponin I (Tpl) inhibits the F-actin-myosin interaction and also binds to the other components of troponin. Troponin C (TpC) is a calcium-binding polypeptide that is structurally and functionally analogous to calmodulin, an important calcium-binding protein widely distributed in nature. Four molecules of calcium ion are bound per molecule of troponin C or calmodulin, and both molecules have a molecular mass of 17 kDa. [Pg.562]

The general picture of muscle contraction in the heart resembles that of skeletal muscle. Cardiac muscle, like skeletal muscle, is striated and uses the actin-myosin-tropomyosin-troponin system described above. Unlike skeletal muscle, cardiac muscle exhibits intrinsic rhyth-micity, and individual myocytes communicate with each other because of its syncytial nature. The T tubular system is more developed in cardiac muscle, whereas the sarcoplasmic reticulum is less extensive and consequently the intracellular supply of Ca for contraction is less. Cardiac muscle thus relies on extracellular Ca for contraction if isolated cardiac muscle is deprived of Ca, it ceases to beat within approximately 1 minute, whereas skeletal muscle can continue to contract without an extraceUular source of Ca +. Cyclic AMP plays a more prominent role in cardiac than in skeletal muscle. It modulates intracellular levels of Ca through the activation of protein kinases these enzymes phosphorylate various transport proteins in the sarcolemma and sarcoplasmic reticulum and also in the troponin-tropomyosin regulatory complex, affecting intracellular levels of Ca or responses to it. There is a rough correlation between the phosphorylation of Tpl and the increased contraction of cardiac muscle induced by catecholamines. This may account for the inotropic effects (increased contractility) of P-adrenergic compounds on the heart. Some differences among skeletal, cardiac, and smooth muscle are summarized in... [Pg.566]

Abnormalities of myocardial contractile and structural proteins P-Myosin heavy chains, troponin, tropomyosin, dystrophin... [Pg.569]

Figure 49-13. Simplified scheme of the causation of familial hypertrophic cardiomyopathy (MIM 192600) due to mutations in the gene encoding fi-myosin heavy chain. Mutations in genes encoding other proteins, such as the troponins, tropomyosin, and cardiac myosin-binding protein C can also cause this condition. Mutations in genes encoding yet other proteins (eg, dystrophin) are involved in the causation of dilated cardiomyopathy. Figure 49-13. Simplified scheme of the causation of familial hypertrophic cardiomyopathy (MIM 192600) due to mutations in the gene encoding fi-myosin heavy chain. Mutations in genes encoding other proteins, such as the troponins, tropomyosin, and cardiac myosin-binding protein C can also cause this condition. Mutations in genes encoding yet other proteins (eg, dystrophin) are involved in the causation of dilated cardiomyopathy.
Proteins of muscle filaments Actin Myosin Tropomyosin Troponin (Tpl,TpT,TpC) Actin Myosin Tropomyosin... [Pg.572]

Troponins T or I Proteins found predominantly in cardiac muscle that regulate calcium-mediated interaction of actin and myosin troponins I and T are released into the blood from myocytes at the time of myocardial cell necrosis after infarction. These biochemical markers become elevated and are used in the diagnosis of myocardial infarction. [Pg.1578]

Upon entering the smooth muscle cell, Ca++ ions bind with calmodulin, an intracellular protein with a chemical structure similar to that of troponin. The resulting Ca++-calmodulin complex binds to and activates myosin kinase. This activated enzyme then phosphorylates myosin. Crossbridge cycling in smooth muscle may take place only when myosin has been phosphorylated. [Pg.157]

The 5-iodoacetamido derivative of fluorescein (5-IAF) has been used to label numerous proteins and other biomolecules, including actin (Plank and Ware, 1987), myosin (Aguirre et al., 1986), troponin (Greene, 1986), hemoglobin (Hirsch et al., 1986), and sulfhydryl-containing proteins separated by SDS electrophoresis (Gorman, 1984). [Pg.407]


See other pages where Troponin proteins is mentioned: [Pg.93]    [Pg.305]    [Pg.694]    [Pg.93]    [Pg.305]    [Pg.694]    [Pg.127]    [Pg.25]    [Pg.26]    [Pg.542]    [Pg.543]    [Pg.546]    [Pg.24]    [Pg.48]    [Pg.292]    [Pg.62]    [Pg.66]    [Pg.67]    [Pg.169]    [Pg.173]    [Pg.177]    [Pg.209]    [Pg.463]    [Pg.569]    [Pg.569]    [Pg.142]    [Pg.143]    [Pg.260]    [Pg.258]    [Pg.260]   
See also in sourсe #XX -- [ Pg.305 ]

See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Calcium binding protein troponin

Regulatory Proteins Troponin and Tropomyosin

Troponins

© 2024 chempedia.info