Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tritium nuclear fusion weapons

This natural inventory was dwarfed by the production of tritium by the atmospheric testing of nuclear fusion weapons during the 1950s and early 1960s. During this period, several hundred kilograms of tritium were released, largely late in the test series, and primarily in the Northern Hemisphere. The... [Pg.139]

Helium-3 [14762-55-1], He, has been known as a stable isotope since the middle 1930s and it was suspected that its properties were markedly different from the common isotope, helium-4. The development of nuclear fusion devices in the 1950s yielded workable quantities of pure helium-3 as a decay product from the large tritium inventory implicit in maintaining an arsenal of fusion weapons (see Deuterium AND TRITIUM) Helium-3 is one of the very few stable materials where the only practical source is nuclear transmutation. The chronology of the isolation of the other stable isotopes of the hehum-group gases has been summarized (4). [Pg.4]

It IS often stated that unclear fusion tvill produce no radioactive hazard, but this is not correct. The most likely fuels for a fusion reactor would be deuterium and radioactive tritium, which arc isotopes of hydrogen. Tritium is a gas, and in the event of a leak it could easily be released into the surrounding environment. The fusion of deuterium and tritium produces neutrons, which would also make the reactor building itself somewhat radioactive. However, the radioactivity produced in a fusion reactor would be much shorter-lived than that from a fission reactor. Although the thermonuclear weapons (that use nuclear fusion), first developed in the 1950s provided the impetus for tremendous worldwide research into nuclear fusion, the science and technology required to control a fusion reaction and develop a commercial fusion reactor are probably still decades away. [Pg.849]

Deuterium (2D) and tritium (3T) are heavier isotopes of hydrogen. The former is stable and makes up about 0.015 per cent of all normal hydrogen. Its physical and chemical properties are slightly different from those of the light isotope Tl For example, in the electrolysis of water H is evolved faster and this allows fairly pure D2 to be prepared. Tritium is a radioactive b-emitter with a half-life of 12.35 years, and is made when some elements are bombarded with neutrons. Both isotopes are used for research purposes. They also undergo very exothermic nuclear fusion reactions, which form the basis for thermonuclear weapons (hydrogen bombs) and could possibly be used as a future energy source. [Pg.149]

A nuclear application of lithium is in thermonuclear weapons and fusion research. In a weapon or fusion reactor, nuclear fusion occurs between two isotopes of hydrogen—deuterium and tritium. Deuterium occurs naturally and has an abundant supply in the worlds oceans (it is present in about 0.015 percent of water molecules). Tritium, on the other hand, is radioactive, has a relatively short half-life, and does not occur naturally. Tritium can be manufactured, however, by bombarding lithium 6 with neutrons. [Pg.52]

Nuclear fusion became important on Farth with the development of hydrogen bombs. A core of uranium or plutonium is used to initiate a fission reaction that raises the core s temperature to approximately 10 K, sufficient to cause fusion reactions between deuterium and tritium. In fusion bombs, LiD is used as Li reacts with fission neutrons to form tritium that then undergoes fusion with deuterium. It is estimated that approximately half the energy of a 50 megaton thermonuclear weapon comes from fusion and the other half from fission. Fusion reactions in these weapons also produce secondary fission since the high energy neutrons released in the fusion reactions make them very efficient in causing the fission of... [Pg.873]

A simple nuclear weapon derives its energy from nuclear fission. A mass of fissionable material is rapidly assembled into a critical mass, in which a chain reaction develops and releases tremendous amounts of energy. This is known as an atomic bomb. Nuclear fusion can be used to make a more powerful weapon. In such a weapon, the X-ray thermal radiation from a nuclear fission explosion is used to heat and compress a small amount of tritium, deuterium, or hthium, causing nuclear fusion, releasing even more energy. Such a weapon is called a hydrogen bomb and can be hundreds of times more powerful than an atomic bomb. [Pg.101]

Tritium is radioactive, a weak p-emitter with a half-life of 12.3 yr. It is used extensively as a tracer, in both chemical and biochemical studies. Its weak radioactivity, rapid excretion and failure to concentrate in vulnerable organs make it one of the least toxic radioisotopes. A major use of tritium is in the triggering mechanisms of weapons based on nuclear fusion. [Pg.303]

It should be noted that breeders would not reduce the demand for uranium ore for many decades because several LWR and/or HWR converters (which produce fissionable material, but less than consumption) are required during the run-in of a breeder cycle to equilibrium. The doubling time of a breeder (the time required for the breeder to produce sufficient fissionable material to start up a second breeder reactor) might be a significant part of its operating life. Furthermore, natural uranium will be required for the thorium cycle, if it is used, and for startup of the fusion cycle. The tritium for the fusion cycle will be made in nuclear reactors, as it now is for nuclear weapons. The nuclear industry will always be dependent on a continuing supply of uranium from ore. [Pg.961]

FUSION. In the context of nuclear weapons and nuclear reactors, fusion refers to the process of combining of two light-nuclei atoms into a single heavier nucleus. This process is accompanied by the release of a substantial amount of energy. The light-nuclei atoms typically used in this process are deuterium and tritium. See also GEORGE HYDROGEN BOMB. [Pg.83]

Tritium is also produced e.g. during nuclear weapon explosions. The radioactive properties of tritium are used in research, fusion reactors and also for dim light sources such as e.g. exit signs where it is mixed with phosphor and for the same purpose it is used in watches. Tritium was discovered by E. Rutherford, M.L. Oliphant, and P. Harteck, in 1934. [Pg.8]


See other pages where Tritium nuclear fusion weapons is mentioned: [Pg.55]    [Pg.601]    [Pg.602]    [Pg.263]    [Pg.150]    [Pg.150]    [Pg.695]    [Pg.241]    [Pg.244]    [Pg.19]    [Pg.184]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Nuclear fusion

Nuclear fusion weapons

Nuclear weapons

Tritium

Tritium, nuclear fusion

© 2024 chempedia.info