Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triphenylphosphine synthesis

The high nucleophilicity of sulfur atoms is preserved, even if it is bound to electron withdrawing carbonyl groups. Thiocarboxylales, for example, substitute bromine, e.g. of a-bromo ketones. In the presence of bases the or-acylthio ketones deprotonate and rearrange to episulfides. After desulfurization with triphenylphosphine, 1,3-diketones are formed in good yield. Thiolactams react in the same way, and A. Eschenmoser (1970) has used this sequence in his vitamin B]2 synthesis (p. 261). [Pg.59]

An elegant synthesis method which is specific to sulfone polymers containing phenyl—phenyl linkages (such as PPSF) is the nickel-catalysed coupling of aryl dihahdes. The scheme for this synthesis involves a two-step process. First, an aromatic dihaUde intermediate is formed which carries the backbone features of the desired polymer. This aromatic dihahde intermediate is then self-coupled in the presence of sero-valent nickel, triphenylphosphine, and excess sine to form the biphenyl- or terphenyl-containing polymer. AppHcation of this two-step scheme to PPSF can be depicted as follows ... [Pg.463]

An interesting application of a phosphorus ylide in heterocyclic synthesis is in a ring annulation. The diazopyrazole (592) when treated with various phosphorus ylides gave the 3//-pyrazolo[5,l-c][l,2,4]triazole derivatives (593) with elimination of triphenylphosphine (79TL1567). [Pg.166]

The conversion of coordinated NSCI into a nitrido ligand provides a useful synthesis of transition-metal nitrides. For example, treatment of ReCl4(NSCl)(POCl3) with triphenylphosphine generates the nitrido complex ReNClaCPPhsla. "... [Pg.134]

A structurally unrelated agent is tazadolene (40). The synthesis of tazadolene begins with P-keto ester 37 and subsequent enamine formation with 3-amino-1-propanol followed by hydrogenolysis to give 38. This phenylhydroxymethyl compound is then dehydrated with hydrochloride acid to form olefin 39. Treatment with bromine and triphenylphosphine effects cycliza-tion to form the azetidine ring of tazadolene [10]. [Pg.6]

Scheme 5.2-15 Synthesis of a guanidinium-modified triphenylphosphine ligand. Scheme 5.2-15 Synthesis of a guanidinium-modified triphenylphosphine ligand.
Scheme 3b). It is instructive at this point to reiterate that the furan nucleus can be used in synthesis as a progenitor for a 1,4-dicarbonyl. Whereas the action of aqueous acid on a furan is known to provide direct access to a 1,4-dicarbonyl compound, exposure of a furan to an alcohol and an acid catalyst should result in the formation of a 1,4-diketal. Indeed, when a solution of intermediate 15 in benzene is treated with excess ethylene glycol, a catalytic amount of / ara-toluenesulfonic acid, and a trace of hydroquinone at reflux, bisethylene ketal 14 is formed in a yield of 71 %. The azeotropic removal of water provides a driving force for the ketalization reaction, and the presence of a trace of hydroquinone suppresses the formation of polymeric material. Through a Finkelstein reaction,14 the action of sodium iodide on primary bromide 14 results in the formation of primary iodide 23, a substance which is then treated, in crude form, with triphenylphosphine to give crystalline phosphonium iodide 24 in a yield of 93 % from 14. Scheme 3b). It is instructive at this point to reiterate that the furan nucleus can be used in synthesis as a progenitor for a 1,4-dicarbonyl. Whereas the action of aqueous acid on a furan is known to provide direct access to a 1,4-dicarbonyl compound, exposure of a furan to an alcohol and an acid catalyst should result in the formation of a 1,4-diketal. Indeed, when a solution of intermediate 15 in benzene is treated with excess ethylene glycol, a catalytic amount of / ara-toluenesulfonic acid, and a trace of hydroquinone at reflux, bisethylene ketal 14 is formed in a yield of 71 %. The azeotropic removal of water provides a driving force for the ketalization reaction, and the presence of a trace of hydroquinone suppresses the formation of polymeric material. Through a Finkelstein reaction,14 the action of sodium iodide on primary bromide 14 results in the formation of primary iodide 23, a substance which is then treated, in crude form, with triphenylphosphine to give crystalline phosphonium iodide 24 in a yield of 93 % from 14.
Unsaturated -lactone 34 adopts a well-defined conformation and provides a suitable platform for the introduction of the stereogenic center at C-24 (monensin numbering). Catalytic hydrogenation of the carbon-carbon double bond in 34 takes place preferentially from the less hindered side of the molecule and provides an 8 1 mixture of stereoisomers in favor of 35 (100% yield). Cleavage of -lactone 35 with concentrated hydriodic acid at 130°C, followed by treatment of the resultant iodide 36 with triphenylphosphine, completes the synthesis of intermediate 19. [Pg.241]

During the course of an elegant synthesis of the multifunctional FR-900482 molecule [( )-43, Scheme 9], the Danishefsky group accomplished the assembly of tetracycle 42 using an intramolecular Heck arylation as a key step.24 In the crucial C-C bond forming reaction, exposure of aryl iodide 41 to a catalytic amount of tetra-kis(triphenylphosphine)palladium(o) and triethylamine in acetonitrile at 80 °C effects the desired Heck arylation, affording 42 in an excellent yield of 93 %. The impressive success of this cyclization reaction is noteworthy in view of the potentially sensitive functionality contained within 41. [Pg.574]

A general method for the synthesis of N-unsubstituted aziridine-2-carboxylates involves a triphenylphosphine-mediated reductive cyclization of hydroxy azido esters [17-22]. A recent example involves the treatment of [1-hydroxy-a-azido ester 15 (Scheme 3.6) with PPh3 to give aziridine 16 in 90% yield [19]. a-Hydroxy- 3-azido esters undergo similar reactions to give aziridine-2-carboxylates [20-22],... [Pg.76]

The ability of triphenylphosphine to act as a reducing agent probably involves initial formation of Ph3PCl2, which then undergoes solvolysis. If the synthesis is carried out using a small volume of ethanol, an orange polymorph is formed [45]. [Pg.90]

The 1,3,4-oxadiazole 113 is formed from the azo compound 112 by the action of triphenylphosphine <96SL652>. A general synthesis of 1,3.4-oxadiazolines consists in boiling an acylhydrazone with an acid anhydride (e.g., Scheme 18) <95JHC1647>. 2-Alkoxy-2-amino-l,3,4-oxadiazolines are sources of alkoxy(amino)carbenes the spiro compound 114, for instance, decomposes in boiling benzene to nitrogen, acetone and the carbene 115, which was trapped as the phenyl ether 116 in the presence of phenol <96JA4214>. [Pg.219]

The use of triphenylphosphine and 2,2 -bipyridyl disulphide in oxidation-reduction condensations has been extended to the phosphorylation of alcohols and phosphates, and to the preparation of 5 -(2-pyridyl) phosphorothioates (60) which have been used for the synthesis of pyrophosphates (see Chapter 6, Section 1). [Pg.14]

A. Preparation.—The first reverse Wittig olefin synthesis has been reported. Triphenylphosphine oxide and dicyanoacetylene at 160 °C gave the stable ylide (1 78%) the reaction was reversed at 300 °C. No comparable reaction was observed with a variety of other activated acetylenes but tri phenyl arsine oxide gave the corresponding stable arsoranes with dicyanoacetylene (— 70 °C), methyl propiolate, hexafluorobut-2-yne, dimethyl acetylene dicarboxylate, and ethyl phenylpropiolate (130 °C). [Pg.150]

A mechanism for this reaction involving nucleophilic attack of the ylide on the cyanide group and formation of the P=N linkage via a four-centred intermediate was formulated. The structure of this phosphazene was confirmed by its synthesis from the vinyl azide, Ph(N3)C=CHPh, and triphenylphosphine. Phosphoranes stabilized by electron-withdrawing... [Pg.197]


See other pages where Triphenylphosphine synthesis is mentioned: [Pg.172]    [Pg.480]    [Pg.172]    [Pg.480]    [Pg.161]    [Pg.327]    [Pg.77]    [Pg.12]    [Pg.12]    [Pg.244]    [Pg.118]    [Pg.314]    [Pg.35]    [Pg.183]    [Pg.153]    [Pg.215]    [Pg.26]    [Pg.207]    [Pg.185]    [Pg.193]    [Pg.127]    [Pg.259]    [Pg.345]    [Pg.475]    [Pg.481]    [Pg.646]    [Pg.190]    [Pg.693]    [Pg.140]    [Pg.319]    [Pg.94]    [Pg.137]   
See also in sourсe #XX -- [ Pg.380 ]




SEARCH



Traceless synthesis using polymer-bound triphenylphosphine

© 2024 chempedia.info