Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tricarboxylate transporter, mitochondrial

Acetyl-CoA carboxylase is an allosteric enzyme and is activated by citrate, which increases in concentration in the well-fed state and is an indicator of a plentiful supply of acetyl-CoA. Citrate converts the enzyme from an inactive dimer to an active polymeric form, having a molecular mass of several milhon. Inactivation is promoted by phosphorylation of the enzyme and by long-chain acyl-CoA molecules, an example of negative feedback inhibition by a product of a reaction. Thus, if acyl-CoA accumulates because it is not esterified quickly enough or because of increased lipolysis or an influx of free fatty acids into the tissue, it will automatically reduce the synthesis of new fatty acid. Acyl-CoA may also inhibit the mitochondrial tricarboxylate transporter, thus preventing activation of the enzyme by egress of citrate from the mitochondria into the cytosol. [Pg.178]

F. Wu, F. Yang, KC Vinnakota, and DA Beard, Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysio logy. J. Biol. Chem. 282(34), 24525 24537 (2007). [Pg.240]

The most important process in the degradation of fatty acids is p-oxidation—a metabolic pathway in the mitochondrial matrix (see p. 164). initially, the fatty acids in the cytoplasm are activated by binding to coenzyme A into acyl CoA [3]. Then, with the help of a transport system (the carnitine shuttle [4] see p. 164), the activated fatty acids enter the mitochondrial matrix, where they are broken down into acetyl CoA. The resulting acetyl residues can be oxidized to CO2 in the tricarboxylic acid cycle, producing reduced... [Pg.162]

Many of the biochemical processes that generate chemical energy for the cell take place in the mitochondria. These organelles contain the biochemical equipment necessary for fatty acid oxidation, di- and tricarboxylic acid oxidation, amino acid oxidation, electron transport, and ATP generation. In this experiment, a mitochondrial fraction will be isolated from beef heart muscle. The mitochondria will be analyzed for protein content and fractionated into submitochondrial particles. Each fraction will be analyzed for malate dehydrogenase and monoamine oxidase activities. [Pg.357]

Whereas a major function of biological membranes is to maintain the status quo by preventing loss of vital materials and entry of harmful substances, membranes must also engage in selective transport processes. Living cells depend on an influx of phosphate and other ions, and of nutrients such as carbohydrates and amino acids. They extrude certain ions, such as Na+, and rid themselves of metabolic end products. How do these ionic or polar species traverse the phospholipid bilayer of the plasma membrane How do pyruvate, malate, the tricarboxylic acid citrate and even ATP move between the cytosol and the mitochondrial matrix (see figs. 13.15 and 14.1) The answer is that biological membranes contain proteins that act as specific transporters, or permeases. These proteins behave much like conventional enzymes They bind substrates and they release products. Their primary function, however, is not to catalyze chemical reactions but to move materials from one side of a membrane to the other. In this section we discuss the general features of membrane transport and examine the structures and activities of several transport proteins. [Pg.398]

These organelles are the sites of energy production of aerobic cells and contain the enzymes of the tricarboxylic acid cycle, the respiratory chain, and the fatty acid oxidation system. The mitochondrion is bounded by a pair of specialized membranes that define the separate mitochondrial compartments, the internal matrix space and an intermembrane space. Molecules of 10,000 daltons or less can penetrate the outer membrane, but most of these molecules cannot pass the selectively permeable inner membrane. By a series of infoldings, the internal membrane forms cristae in the matrix space. The components of the respiratory chain and the enzyme complex that makes ATP are embedded in the inner membrane as well as a number of transport proteins that make it selectively permeable to small molecules that are metabolized by the enzymes in the matrix space. Matrix enzymes include those of the tricarboxylic acid cycle, the fatty acid oxidation system, and others. [Pg.9]

Pyruvate enters the tricarboxylic acid cycle after conversion into acetyl-CoA via the PDHC. The tricarboxylic acid cycle generates NADH from NAD+, and the NADH then enters the mitochondrial electron-transport chain. [Pg.302]

Inside the inner membrane of a mitochondrion is a viscous region known as the matrix (Fig. 1-9). Enzymes of the tricarboxylic acid (TCA) cycle (also known as the citric acid cycle and the Krebs cycle), as well as others, are located there. For substrates to be catabolized by the TCA cycle, they must cross two membranes to pass from the cytosol to the inside of a mitochondrion. Often the slowest or rate-limiting step in the oxidation of such substrates is their entry into the mitochondrial matrix. Because the inner mitochondrial membrane is highly impermeable to most molecules, transport across the membrane using a carrier or transporter (Chapter 3, Section 3.4A) is generally invoked to explain how various substances get into the matrix. These carriers, situated in the inner membrane, might shuttle important substrates from the lumen between the outer and the inner mitochondrial membranes to the matrix. Because of the inner membrane, important ions and substrates in the mitochondrial matrix do not leak out. Such permeability barriers between various subcellular compartments improve the overall efficiency of a cell. [Pg.24]

Actively respiring fungal cells possess a distinct mitochondrion, which has been described as the power-house of the cell (Fig. 4.2). The enzymes of the tricarboxylic acid cycle (Kreb s cycle) are located in the matrix of the mitochondrion, while electron transport and oxidative phosphorylation occur in the mitochondrial inner membrane. The outer membrane contains enzymes involved in lipid biosynthesis. The mitochondrion is a semiindependent organelle as it possesses its own DNA and is capable of producing its own proteins on its own ribosomes, which are referred to as mitoribosomes. [Pg.46]

The second metabolic pathway which we have chosen to describe is the tricarboxylic acid cycle, often referred to as the Krebs cycle. This represents the biochemical hub of intermediary metabolism, not only in the oxidative catabolism of carbohydrates, lipids, and amino acids in aerobic eukaryotes and prokaryotes, but also as a source of numerous biosynthetic precursors. Pyruvate, formed in the cytosol by glycolysis, is transported into the matrix of the mitochondria where it is converted to acetyl CoA by the multi-enzyme complex, pyruvate dehydrogenase. Acetyl CoA is also produced by the mitochondrial S-oxidation of fatty acids and by the oxidative metabolism of a number of amino acids. The first reaction of the cycle (Figure 5.12) involves the condensation of acetyl Co and oxaloacetate to form citrate (1), a Claisen ester condensation. Citrate is then converted to the more easily oxidised secondary alcohol, isocitrate (2), by the iron-sulfur centre of the enzyme aconitase (described in Chapter 13). This reaction involves successive dehydration of citrate, producing enzyme-bound cis-aconitate, followed by rehydration, to give isocitrate. In this reaction, the enzyme distinguishes between the two external carboxyl groups... [Pg.102]

In humans, oxaloacetate must be transported out of the mitochondrion to supply the cytosolic PEPCK. Because there is no mitochondrial carrier for oxaloacetate and its diffusion across the mitochondrial membrane is slow, it is transported as malate or asparate (Figure 15-2). The malate shuttle carries oxaloacetate and reducing equivalents, whereas the aspartate shuttle, which does not require a preliminary reduction step, depends on the availability of glutamate and a-ketoglutarate in excess of tricarboxylic acid (TCA) cycle requirements. [Pg.276]

The urea cycle converts NH4 to urea, a less toxic molecule. The sources of the atoms in urea are shown in color. Cit-rulline is transported across the inner membrane by a carrier for neutral amino acids. Ornithine is transported in exchange for H+ or citrulline. Fumarate is transported back into the mitochondrial matrix (for reconversion to malate) by carriers for a-ketoglutarate or tricarboxylic acids. [Pg.510]

The soluble isozyme is generally considered to take part in the cytoplasmic side of the malate shuttle, providing a means of transporting NADH equivalents, in the form of malate, across the mitochondrial membrane. The mitochondrial enzyme, in addition to its role in the other half of the malate shuttle, is also a necessary component of the tricarboxylic acid cycle. The microbody malate dehydrogenase found in some plants appears to function in the glyoxylate cycle (5) or possibly in photorespiration ( ). [Pg.370]

Fig. 8. Pathways involved in the conversion of glucose to fatty acid. Reaction (1) is catalyzed by cytosolic malate dehydrogenase. Reaction (2) is catalyzed by mitochondrial malate dehydrogenase. (T) designates tricarboxylate anion transporter. Reactions catalyzed by glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the pentose phosphate pathway produce NADPH. CS, citrate synthase ACL, ATP citrate lyase PDH, pyruvate dehydrogenase complex ACC, acetyl-CoA carboxylase FAS, fatty acid synthase. Fig. 8. Pathways involved in the conversion of glucose to fatty acid. Reaction (1) is catalyzed by cytosolic malate dehydrogenase. Reaction (2) is catalyzed by mitochondrial malate dehydrogenase. (T) designates tricarboxylate anion transporter. Reactions catalyzed by glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the pentose phosphate pathway produce NADPH. CS, citrate synthase ACL, ATP citrate lyase PDH, pyruvate dehydrogenase complex ACC, acetyl-CoA carboxylase FAS, fatty acid synthase.

See other pages where Tricarboxylate transporter, mitochondrial is mentioned: [Pg.177]    [Pg.1047]    [Pg.394]    [Pg.113]    [Pg.463]    [Pg.261]    [Pg.610]    [Pg.631]    [Pg.11]    [Pg.42]    [Pg.545]    [Pg.92]    [Pg.110]    [Pg.152]    [Pg.140]    [Pg.144]    [Pg.146]    [Pg.154]    [Pg.274]    [Pg.245]    [Pg.142]    [Pg.152]    [Pg.319]    [Pg.9]    [Pg.196]    [Pg.1117]    [Pg.769]    [Pg.2231]    [Pg.17]    [Pg.218]    [Pg.277]    [Pg.133]    [Pg.166]    [Pg.429]   
See also in sourсe #XX -- [ Pg.384 ]




SEARCH



Transport mitochondrial

Tricarboxylates

Tricarboxylic transporter

© 2024 chempedia.info