Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen ion transport

The anode materials must be compatible with the electrolyte and transport oxygen ions from the electrolyte, and electrons from the interconnect and gas from the fuel. Nickel and YSZ cement are the most widely used anode materials due to their... [Pg.365]

In low temperature fuel ceUs, ie, AEG, PAEC, PEEC, protons or hydroxyl ions are the principal charge carriers in the electrolyte, whereas in the high temperature fuel ceUs, ie, MCEC, SOEC, carbonate and oxide ions ate the charge carriers in the molten carbonate and soHd oxide electrolytes, respectively. Euel ceUs that use zitconia-based soHd oxide electrolytes must operate at about 1000°C because the transport rate of oxygen ions in the soHd oxide is adequate for practical appHcations only at such high temperatures. Another option is to use extremely thin soHd oxide electrolytes to minimize the ohmic losses. [Pg.577]

Radiochemical studies indicate that the pore base is the actual site of formation of aluminium oxide, presumably by transport of aluminium ions across the barrier-layer, although transport of oxygen ions in the opposite direction has been postulated by some authorities. The downward extension of the pore takes place by chemical solution, which may be enhanced by the heating effect of the current and the greater solution rate of the freshly formed oxide, but will also be limited by diffusion. It has been shown that the freshly formed oxide, y -AljOj, is amorphous and becomes slowly converted into a more nearly crystalline modifipation of y-AljO . [Pg.692]

Fig. 2. Models for oxygen-ion transport mechanism over Ag-YSZ/CuO electrodes (a) at low overpotential, (b) at high overpotential [3]. Fig. 2. Models for oxygen-ion transport mechanism over Ag-YSZ/CuO electrodes (a) at low overpotential, (b) at high overpotential [3].
The electrons are transported through an outer circuit connected to the cathode, where oxygen is reduced to oxygen ions on a similar catalyst system as for the anode ... [Pg.342]

The principle of the A-probe is shown in Fig. 10.2. It is a simple oxygen sensor made in a similar manner to the solid oxide fuel cell discussed in Chapter 8. An oxide that allows oxygen ions to be transported is resistively heated to ensure sufficiently high mobility and a short response time ( 1 s.). [Pg.380]

It is well known that the selective transport of ions through a mitochondrial inner membrane is attained when the oxygen supplied by the respiration oxidizes glycolysis products in mitochondria with the aid of such substances as flavin mononucleotide (FMN), fi-nicotinamide adenine dinucleotide (NADH), and quinone (Q) derivatives [1-3]. The energy that enables ion transport has been attributed to that supplied by electron transport through the membrane due to a redox reaction occurring at the aqueous-membrane interface accompanied by respiration [1-5],... [Pg.489]

In some ionic crystals (primarily in halides of the alkali metals), there are vacancies in both the cationic and anionic positions (called Schottky defects—see Fig. 2.16). During transport, the ions (mostly of one sort) are shifted from a stable position to a neighbouring hole. The Schottky mechanism characterizes transport in important solid electrolytes such as Nernst mass (Zr02 doped with Y203 or with CaO). Thus, in the presence of 10 mol.% CaO, 5 per cent of the oxygen atoms in the lattice are replaced by vacancies. The presence of impurities also leads to the formation of Schottky defects. Most substances contain Frenkel and Schottky defects simultaneously, both influencing ion transport. [Pg.137]

In general Zr02 oxygen sensors consist of a tube-like solid-state Zr02 electrolyte where the electronic conductivity is based on oxygen ion charge carrier transport. The inner and outer surface of the yttrium-doped and stabilized zirconia tube is covered by porous platinum electrodes. [Pg.147]

In natural waters, dissolved zinc speciates into the toxic aquo ion [Zn(H20)6]2+, other dissolved chemical species, and various inorganic and organic complexes zinc complexes are readily transported. Aquo ions and other toxic species are most harmful to aquatic life under conditions of low pH, low alkalinity, low dissolved oxygen, and elevated temperatures. Most of the zinc introduced into aquatic environments is eventually partitioned into the sediments. Zinc bioavailability from sediments is enhanced under conditions of high dissolved oxygen, low salinity, low pH, and high levels of inorganic oxides and humic substances. [Pg.725]

Both the oxides (3- and (3"-alumina show extremely high Na+ ion conductivity. As the structure suggests, the conductivity is anisotropic, and rapid sodium ion transport is limited to the two-dimensional conduction plane. There is almost unimpeded motion in the Na+ layers, especially in (3"-alumina, which lacks interstitial oxygen ion defects in the conduction plane, and the conductivity is of the same order of magnitude as in a strong solution of a sodium salt in water. The conductivity is a... [Pg.274]

In operation, the fuel flows over the anode and reacts with oxide ions arriving from the electrolyte. Oxygen flows over the cathode where it is reduced and transported as ions from the high oxygen pressure cathode region to the low oxygen pressure anode region. The cell reactions depend upon the fuel. Typically these are... [Pg.290]

Thus, measurement of the total conductivity together with the cell voltage allows the transport numbers of the ions to be determined (Fig. 8.17). The results show that at lower temperatures proton conductivity is of greatest importance, at middle temperatures oxygen ion conductivity becomes dominant, and at high temperatures the material is predominantly a hole conductor. Between these temperatures, at approximately 350°C the solid is a mixed H+ and O2- conductor while at approximately 650°C it is a mixed hole and O2- conductor. [Pg.387]

Fig. 3. Oxygen transport in solids. 02 is dissociated and ionized at the reduction interface to give O2 ions, which are transferred across the solid to the oxidation interface, at which they lose the electrons to return back to 02 molecules that are released to the stream, (a) In the solid electrolyte cell based on a classical solid electrolyte, the ionic oxygen transport requires electrodes and external circuitry to transfer the electrons from the oxidation interface to the reduction interface (b) in the mixed conducting oxide membrane, the ionic oxygen transport does not require electrodes and external circuitry to transfer the electrons to the reduction interface from the oxidation interface, because the mixed conductor oxide provides high conductivities for both oxygen ions and electrons. Fig. 3. Oxygen transport in solids. 02 is dissociated and ionized at the reduction interface to give O2 ions, which are transferred across the solid to the oxidation interface, at which they lose the electrons to return back to 02 molecules that are released to the stream, (a) In the solid electrolyte cell based on a classical solid electrolyte, the ionic oxygen transport requires electrodes and external circuitry to transfer the electrons from the oxidation interface to the reduction interface (b) in the mixed conducting oxide membrane, the ionic oxygen transport does not require electrodes and external circuitry to transfer the electrons to the reduction interface from the oxidation interface, because the mixed conductor oxide provides high conductivities for both oxygen ions and electrons.
Shown in Figure 1.1 is the oxygen ion conductivity of selected oxides. Among these oxides, only a few materials have been developed as SOFC electrolytes due to numerous requirements of the electrolyte components. These requirements include fast ionic transport, negligible electronic conduction, and thermodynamic stability over a wide range of temperature and oxygen partial pressure. In addition, they must... [Pg.2]

Inorganic membranes can be categorized as shown in Table 2.1. The dense inorganic membranes consist of solid layers of metals (Pd, Ag, alloys) or (oxidic) solid electrolytes which allow diffusion of hydrogen (or oxygen). In the case of solid electrolytes transport of ions takes place. Another category of dense membranes consist of a porous support in which a liquid is... [Pg.11]

Eor the purpose of modeling, consider a planar SOEC divided into anode gas channel, anode gas diffusion electrode, anode interlayer (active electrode), electrolyte, cathode interlayer (active electrode), cathode gas diffusion electrode, and cathode gas channel. The electrochemical reactions occur in the active regions of the porous electrodes (i.e., interlayers). In an SOFC, oxidant reduction occurs in the active cathode. The oxygen ions are then transported through the electrolyte, after which oxidation of the fuel occurs in the active anode by the following reactions. [Pg.522]


See other pages where Oxygen ion transport is mentioned: [Pg.281]    [Pg.279]    [Pg.281]    [Pg.279]    [Pg.246]    [Pg.137]    [Pg.180]    [Pg.160]    [Pg.314]    [Pg.260]    [Pg.286]    [Pg.134]    [Pg.182]    [Pg.95]    [Pg.99]    [Pg.120]    [Pg.136]    [Pg.428]    [Pg.468]    [Pg.160]    [Pg.314]    [Pg.36]    [Pg.164]    [Pg.255]    [Pg.382]    [Pg.389]    [Pg.328]    [Pg.6]    [Pg.62]    [Pg.131]    [Pg.200]    [Pg.346]    [Pg.216]    [Pg.554]    [Pg.565]    [Pg.566]   
See also in sourсe #XX -- [ Pg.30 , Pg.53 ]




SEARCH



Ion transporters

Oxygen transport

Proton transport mechanisms oxygen ions

© 2024 chempedia.info