Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transmission electron composites

Nylon-6. Nylon-6—clay nanometer composites using montmorillonite clay intercalated with 12-aminolauric acid have been produced (37,38). When mixed with S-caprolactam and polymerized at 100°C for 30 min, a nylon clay—hybrid (NCH) was produced. Transmission electron microscopy (tern) and x-ray diffraction of the NCH confirm both the intercalation and molecular level of mixing between the two phases. The benefits of such materials over ordinary nylon-6 or nonmolecularly mixed, clay-reinforced nylon-6 include increased heat distortion temperature, elastic modulus, tensile strength, and dynamic elastic modulus throughout the —150 to 250°C temperature range. [Pg.329]

Transmission electron micrographs show hectorite and nontronite as elongated, lath-shaped units, whereas the other smectite clays appear more nearly equidimensional. A broken surface of smectite clays typically shows a "com flakes" or "oak leaf surface texture (54). High temperature minerals formed upon heating smectites vary considerably with the compositions of the clays. Spinels commonly appear at 800—1000°C, and dissolve at higher temperatures. Quartz, especially cristobalite, appears and mullite forms if the content of aluminum is adequate (38). [Pg.198]

Transmission electron microscopes (TEM) with their variants (scanning transmission microscopes, analytical microscopes, high-resolution microscopes, high-voltage microscopes) are now crucial tools in the study of materials crystal defects of all kinds, radiation damage, ofif-stoichiometric compounds, features of atomic order, polyphase microstructures, stages in phase transformations, orientation relationships between phases, recrystallisation, local textures, compositions of phases... there is no end to the features that are today studied by TEM. Newbury and Williams (2000) have surveyed the place of the electron microscope as the materials characterisation tool of the millennium . [Pg.221]

Four different material probes were used to characterize the shock-treated and shock-synthesized products. Of these, magnetization provided the most sensitive measure of yield, while x-ray diffraction provided the most explicit structural data. Mossbauer spectroscopy provided direct critical atomic level data, whereas transmission electron microscopy provided key information on shock-modified, but unreacted reactant mixtures. The results of determinations of product yield and identification of product are summarized in Fig. 8.2. What is shown in the figure is the location of pressure, mean-bulk temperature locations at which synthesis experiments were carried out. Beside each point are the measures of product yield as determined from the three probes. The yields vary from 1% to 75 % depending on the shock conditions. From a structural point of view a surprising result is that the product composition is apparently not changed with various shock conditions. The same product is apparently obtained under all conditions only the yield is changed. [Pg.182]

Transmission electron microscopic observaiion reveals various morphologies of precipitates depending upon the constituents and composition of an alloy system, history of heat treatments etc. Typical examples are spherical precipitates found in Nl-Cr-Al system and cuboidal precipitates in Fe-Mo system [1]. The first question raised is what determines the shape of a precipitate. [Pg.83]

The crystallization of glassy Pd-Ni-P and Pd-Cu-P alloys is complicated by the formation of metastable crystalline phaf s [26]. The final (stable) crystallization product consists of a mixture of a (Pd,Ni) or (Pd,Cu) fee solid solution and more than one kind of metal phosphide of low crystallographic symmetry. Donovan et al. [27] used transmission electron microscopy (TEM) and X-ray microanalysis to study the microstructure of slowly cooled crystalline Pd4oNi4oP2o- They identified the compositions of the metal phosphides to be Pd34Ni45P2j and Pdg8Ni[4Pjg. [Pg.295]

The nano-scale structures in polymer layered-silicate nano-composites can be thoroughly characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD is used to identify intercalated structures. XRD allows quantification of changes in layer spacing and the most commonly used to probe the nano-composite structure and... [Pg.32]

In the matrix of PLA/ polycaprilactone (PCL)/OMMT nano-composites, the silicate layers of the organoclay were intercalated and randomly distributed (Zhenyang et at, 2007). The PLA/PCL blend significantly improved the tensile and other mechanical properties by addition of OMMT. Thermal stability of PLA/PCL blends was also explicitly improved when the OMMT content is less than 5%wt. Preparation of PLA/thermoplastic starch/MMT nano-composites have been investigated and the products have been characterized using X-Ray diffraction, transmission electron microscopy and tensile measurements. The results show improvement in the tensile and modulus, and reduction in fracture toughness (Arroyo et ah, 2010). [Pg.36]

FIGURE 3.12 Morphology of mbber-silica hybrid composites synthesized from solution process using different solvents (a) and (b) are the scanning electron microscopic (SEM) pictures of acrylic rubber (ACM)-silica hybrid composites prepared from THF (T) and ethyl acetate (EAc) (E) and (c) and (d) are the transmission electron microscopic (TEM) pictures of epoxidized natural rubber (ENR)-siUca hybrid composites synthesized from THF and chloroform (CH). (From Bandyopadhyay, A., De Sarkar, M., and Bhowmick, A.K., J. Appl. Polym. Sci., 95, 1418, 2005 and Bandyopadhyay, A., De Sarkar, M., and Bhowmick, A.K., J. Mater. Sci., 40, 53, 2005. Courtesy of Wiley InterScience and Springer, respectively.)... [Pg.69]

FIGURE 3.16 Morphology and visual appearance of acrylic rubber (ACM)-silica and epoxidized natural rubber (ENR)-silica hybrid composites prepared from different pH ranges (a) transmission electron microscopic (TEM) picture of ACM-siUca in pH 1.0-2.0, (b) scanning electron microscopic (SEM) picture of ACM-siUca in pH 5.0-6.0, (c) SEM image of ACM-siUca in pH 9.0-10.0, (d) TEM picture of ENR-silica in pH... [Pg.74]

Recent demands for polymeric materials request them to be multifunctional and high performance. Therefore, the research and development of composite materials have become more important because single-polymeric materials can never satisfy such requests. Especially, nanocomposite materials where nanoscale fillers are incorporated with polymeric materials draw much more attention, which accelerates the development of evaluation techniques that have nanometer-scale resolution." To date, transmission electron microscopy (TEM) has been widely used for this purpose, while the technique never catches mechanical information of such materials in general. The realization of much-higher-performance materials requires the evaluation technique that enables us to investigate morphological and mechanical properties at the same time. AFM must be an appropriate candidate because it has almost comparable resolution with TEM. Furthermore, mechanical properties can be readily obtained by AFM due to the fact that the sharp probe tip attached to soft cantilever directly touches the surface of materials in question. Therefore, many of polymer researchers have started to use this novel technique." In this section, we introduce the results using the method described in Section 21.3.3 on CB-reinforced NR. [Pg.597]

The properties of titania particles were investigated using X-ray diffraction (XRD, Model D/MAX-RB, Rigaku Ltd.), scanning electron microscopy (SEM, Model 535M, Philips Ltd.), transmission electron microscopy (TEM, Model 2000EX, JEOL Ltd.). The crystallite sizes were estimated by Scherrer s equation and the composition of rutile phase in titania were estimated from the respective integrated XRD peak intensities. [Pg.762]

Thus, the interaction of the primary beam with the sample provides a wealth of information on morphology, crystallography and chemical composition. Using transmission electron microscopy to make a projection of the sample density is a routine way to study particle sizes in catalysts. [Pg.144]


See other pages where Transmission electron composites is mentioned: [Pg.517]    [Pg.2424]    [Pg.182]    [Pg.198]    [Pg.201]    [Pg.460]    [Pg.260]    [Pg.299]    [Pg.14]    [Pg.117]    [Pg.161]    [Pg.50]    [Pg.206]    [Pg.222]    [Pg.230]    [Pg.90]    [Pg.416]    [Pg.603]    [Pg.172]    [Pg.62]    [Pg.129]    [Pg.369]    [Pg.375]    [Pg.543]    [Pg.613]    [Pg.541]    [Pg.659]    [Pg.202]    [Pg.722]    [Pg.777]    [Pg.31]    [Pg.329]    [Pg.163]    [Pg.102]    [Pg.175]    [Pg.93]   
See also in sourсe #XX -- [ Pg.357 , Pg.362 , Pg.363 ]




SEARCH



Electronic composition

Polymer composite transmission electron

© 2024 chempedia.info