Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition-state theory Assumptions

However, definitive proof for these proposals are difficult to obtain because of the difficulties in temperature measurement alluded to above and that the reaction might be occurring under non-equilibrium conditions, where the conventional rate expressions and transition state theory assumptions may not be valid. [Pg.21]

RRKM theory is also at the basis of localization of loose transition states in the PES. Another assumption of the theory is that a critical configuration exists (commonly called transition state or activated complex) which separates internal states of the reactant from those of the products. In classical dynamics this is what is represented by a dividing surface separating reactant and product phase spaces. Furthermore, RRKM theory makes use of the transition state theory assumption once the system has passed this barrier it never comes back. Here we do not want to discuss the limits of this assumption (this was done extensively for the liquid phase [155] but less in the gas phase for large molecules we can have a situation similar to systems in a dynamical solvent, where the non-reacting sub-system plays the role... [Pg.135]

The transition-state theory assumption implies that the diffusing molecule has no excess energy once it has crossed the transition-state barrier. It loses its energy on a time scale short compared to the diffusion time t. The molecular dynamics calculations show that for the CO/Ni system, energy exchange between CO and the metal surface is slow, giving an increase of the diffusion rate compared to the transition-state result. According to the calculated results, diffusion of CO on Ni... [Pg.184]

The quasi-equilibrium assumption in the above canonical fonn of the transition state theory usually gives an upper bound to the real rate constant. This is sometimes corrected for by multiplying (A3.4.98) and (A3.4.99) with a transmission coefifiwient 0 < k < 1. [Pg.780]

In deriving the RRKM rate constant in section A3.12.3.1. it is assumed that the rate at which reactant molecules cross the transition state, in the direction of products, is the same rate at which the reactants fonn products. Thus, if any of the trajectories which cross the transition state in the product direction return to the reactant phase space, i.e. recross the transition state, the actual unimolecular rate constant will be smaller than that predicted by RRKM theory. This one-way crossing of the transition state, witii no recrossmg, is a fiindamental assumption of transition state theory [21]. Because it is incorporated in RRKM theory, this theory is also known as microcanonical transition state theory. [Pg.1015]

Do we expect this model to be accurate for a dynamics dictated by Tsallis statistics A jump diffusion process that randomly samples the equilibrium canonical Tsallis distribution has been shown to lead to anomalous diffusion and Levy flights in the 5/3 < q < 3 regime. [3] Due to the delocalized nature of the equilibrium distributions, we might find that the microstates of our master equation are not well defined. Even at low temperatures, it may be difficult to identify distinct microstates of the system. The same delocalization can lead to large transition probabilities for states that are not adjacent ill configuration space. This would be a violation of the assumptions of the transition state theory - that once the system crosses the transition state from the reactant microstate it will be deactivated and equilibrated in the product state. Concerted transitions between spatially far-separated states may be common. This would lead to a highly connected master equation where each state is connected to a significant fraction of all other microstates of the system. [9, 10]... [Pg.211]

Examining transition state theory, one notes that the assumptions of Maxwell-Boltzmann statistics are not completely correct because some of the molecules reaching the activation energy will react, lose excess vibrational energy, and not be able to go back to reactants. Also, some molecules that have reacted may go back to reactants again. [Pg.166]

The original microscopic rate theory is the transition state theory (TST) [10-12]. This theory is based on two fundamental assumptions about the system dynamics. (1) There is a transition state dividing surface that separates the short-time intrastate dynamics from the long-time interstate dynamics. (2) Once the reactant gains sufficient energy in its reaction coordinate and crosses the transition state the system will lose energy and become deactivated product. That is, the reaction dynamics is activated crossing of the barrier, and every activated state will successfully react to fonn product. [Pg.201]

Given the foregoing assumptions, it is a simple matter to construct an expression for the transition state theory rate constant as the probability of (1) reaching the transition state dividing surface and (2) having a momenrnm along the reaction coordinate directed from reactant to product. Stated another way, is the equilibrium flux of reactant states across... [Pg.201]

Figure 2 A typical trajectory satisfying the assumptions of transition state theory. The reactive trajectory crosses the transition state surface once and only once on its way from activated reactant to deactivated product. Figure 2 A typical trajectory satisfying the assumptions of transition state theory. The reactive trajectory crosses the transition state surface once and only once on its way from activated reactant to deactivated product.
The assumptions of transition state theory allow for the derivation of a kinetic rate constant from equilibrium properties of the system. That seems almost too good to be true. In fact, it sometimes is [8,18-21]. Violations of the assumptions of TST do occur. In those cases, a more detailed description of the system dynamics is necessary for the accurate estimate of the kinetic rate constant. Keck [22] first demonstrated how molecular dynamics could be combined with transition state theory to evaluate the reaction rate constant (see also Ref. 17). In this section, an attempt is made to explain the essence of these dynamic corrections to TST. [Pg.204]

The natiue of the rate constants k, can be discussed in terms of transition-state theory. This is a general theory for analyzing the energetic and entropic components of a reaction process. In transition-state theory, a reaction is assumed to involve the formation of an activated complex that goes on to product at an extremely rapid rate. The rate of deconposition of the activated con lex has been calculated from the assumptions of the theory to be 6 x 10 s at room temperature and is given by the expression ... [Pg.199]

Let us examine the equilibrium assumption of transition state theory. Consider a reversible elementary reaction at equilibrium. Because the initial and final states are at equilibrium, assuredly the transition state is in equilibrium with each of these. (It follows that for a reaction at equilibrium, transition state theory is exact insofar as the equilibrium assumption is concerned.)... [Pg.201]

A first-order rate constant has the dimension time, but all other rate constants include a concentration unit. It follows that a change of concentration scale results in a change in the magnitude of such a rate constant. From the equilibrium assumption of transition state theory we developed these equations in Chapter 5 ... [Pg.253]

The extension to rates draws on the equilibrium assumption of transition state theory to yield the analogous result, with rate constants replacing the equilibrium constants of Eq. (6-96). Kresge has generalized this argument, the result being... [Pg.302]

Arrhenius proposed his equation in 1889 on empirical grounds, justifying it with the hydrolysis of sucrose to fructose and glucose. Note that the temperature dependence is in the exponential term and that the preexponential factor is a constant. Reaction rate theories (see Chapter 3) show that the Arrhenius equation is to a very good approximation correct however, the assumption of a prefactor that does not depend on temperature cannot strictly be maintained as transition state theory shows that it may be proportional to 7. Nevertheless, this dependence is usually much weaker than the exponential term and is therefore often neglected. [Pg.36]

Transition state theory, as embodied in Eq. 10.3, or implicitly in Arrhenius theory, is inherently semiclassical. Quantum mechanics plays a role only in consideration of the quantized nature of molecular vibrations, etc., in a statistical fashion. But, a critical assumption is that only those molecules with energies exceeding that of the transition state barrier may undergo reaction. In reality, however, the quantum nature of the nuclei themselves permits reaction by some fraction of molecules possessing less than the energy required to surmount the barrier. This phenomenon forms the basis for QMT. ... [Pg.418]

The classical approach for discussing adsorption states was through Lennard-Jones potential energy diagrams and for their desorption through the application of transition state theory. The essential assumption of this is that the reactants follow a potential energy surface where the products are separated from the reactants by a transition state. The concentration of the activated complex associated with the transition state is assumed to be in equilibrium... [Pg.13]

Transition State Theory [1,4] is the most frequently used theory to calculate rate constants for reactions in the gas phase. The two most basic assumptions of this theory are the separation of the electronic and nuclear motions (stemming from the Bom-Oppenheimer approximation [5]), and that the reactant internal states are in thermal equilibrium with each other (that is, the reactant molecules are distributed among their states in accordance with the Maxwell-Boltzmann distribution). In addition, the fundamental hypothesis [6] of the Transition State Theory is that the net rate of forward reaction at equilibrium is given by the flux of trajectories across a suitable phase space surface (rather a hypersurface) in the product direction. This surface divides reactants from products and it is called the dividing surface. Wigner [6] showed long time ago that for reactants in thermal equilibrium, the Transition State expression gives the exact... [Pg.125]

It is appropriate to point out here just why it is not valid to assume (as is commonly done) that throughout the propagation step a paired cation will remain paired and that the resulting newly formed carbenium ion will therefore start its life paired (see, e.g., Mayr et al. [13]). On the contrary, if we follow the assumption made by the founders of Transition State Theory that the transition state can be treated as a thermodynamically stable species, it follows that because in the transition state the positive charge is less concentrated than in the ground state and because therefore the Coulombic force holding... [Pg.595]

Equation 14.11 explicitly contains the equilibrium assumption of transition state theory, i.e. that the transition state and the excited molecules are in chemical equilibrium. [Pg.429]

Using the equilibrium assumption of transition state theory the ratio of concentra-... [Pg.433]

An integer indicating the molecular stoichiometry of an elementary reaction. A fundamental assumption in chemical kinetics is that the kinetic form of a one-step reaction will be identical to its stoichiometric form. In terms of transition-state theory, molecularity equals the number of molecules (or entities) that are used to form the activated complex. For reactions in solution, solvent molecules are counted in the molecularity only if they enter into the overall process, not if they only exert an environmental or solvent effect ". ... [Pg.484]


See other pages where Transition-state theory Assumptions is mentioned: [Pg.1069]    [Pg.15]    [Pg.203]    [Pg.166]    [Pg.202]    [Pg.203]    [Pg.396]    [Pg.225]    [Pg.241]    [Pg.428]    [Pg.74]    [Pg.139]    [Pg.146]    [Pg.126]    [Pg.127]    [Pg.146]    [Pg.346]    [Pg.10]    [Pg.186]    [Pg.435]    [Pg.255]    [Pg.300]    [Pg.270]    [Pg.151]    [Pg.218]    [Pg.288]    [Pg.289]   
See also in sourсe #XX -- [ Pg.391 ]




SEARCH



© 2024 chempedia.info