Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal ions redox reactions

These reactions lead to the formation (transformation) of surface carboxylate and carbonate-like species and to the two electron reduction of the (electrons that can reduce) transition metal ions located in nearest-neighbor positions. On oxidic surfaces that do not contain transition metal ions, redox reactions accompanied by electron transfer from the surface to the adsorbed molecule (or vice versa) are much less probable. [Pg.220]

Common components of many redox systems are a peroxide and a transition metal ion or complex. The redox reactions of peroxides are covered in the sections on those compounds. Discussion on specific redox systems can be found in sections on diacyl peroxides (3,3.2.1.5), hydroperoxides (3,3.2.5) persulfate (3.3.2.6.1) and hydrogen peroxide (3.3.2.6,2). [Pg.104]

Variable valence transition metal ions, such as Co VCo and Mn /Mn are able to catalyze hydrocarbon autoxidations by increasing the rate of chain initiation. Thus, redox reactions of the metal ions with alkyl hydroperoxides produce chain initiating alkoxy and alkylperoxy radicals (Fig. 6). Interestingly, aromatic percarboxylic acids, which are key intermediates in the oxidation of methylaromatics, were shown by Jones (ref. 10) to oxidize Mn and Co, to the corresponding p-oxodimer of Mn or Co , via a heterolytic mechanism (Fig. 6). [Pg.284]

The quinone-hydroquinone system represents a classic example of a fast, reversible redox system. This type of reversible redox reaction is characteristic of many inorganic systems, such as the interchange between oxidation states in transition metal ions, but it is relatively uncommon in organic chemistry. The reduction of benzoquinone to hydroquinone... [Pg.82]

Equilibrium considerations other than those of binding are those of oxidation/reduction potentials to which we drew attention in Section 1.14 considering the elements in the sea. Inside cells certain oxidation/reductions also equilibrate rapidly, especially those of transition metal ions with thiols and -S-S- bonds, while most non-metal oxidation/reduction changes between C/H/N/O compounds are slow and kinetically controlled (see Chapter 2). In the case of fast redox reactions oxidation/reduction potentials are fixed constants. [Pg.116]

A review by Brandt and van Eldik provides insight into the basic kinetic features and mechanistic details of transition metal-catalyzed autoxidation reactions of sulfur(IV) species on the basis of literature data reported up to the early 1990s (78). Earlier results confirmed that these reactions may occur via non-radical, radical and combinations of non-radical and radical mechanisms. More recent studies have shown evidence mainly for the radical mechanisms, although a non-radical, two-electron decomposition was reported for the HgSC>3 complex recently (79). The possiblity of various redox paths combined with protolytic and complex-formation reactions are the sources of manifest complexity in the kinetic characteristics of these systems. Nevertheless, the predominant sulfur containing product is always the sulfate ion. In spite of extensive studies on this topic for well over a century, important aspects of the mechanisms remain to be clarified and the interpretation of some of the reactions is still controversial. Recent studies were... [Pg.431]

It is clear that the colour of a glass is the result of a complex interplay between the co-ordination of the transition metal ions, the redox reactions between the various ions present and the redox potential in the furnace. The traditional archaeological view that colour can be simply related to the presence of various colouring agents can only be regarded as a very crude guide. [Pg.165]

Besides the applications of the electrophilicity index mentioned in the review article [40], following recent applications and developments have been observed, including relationship between basicity and nucleophilicity [64], 3D-quantitative structure activity analysis [65], Quantitative Structure-Toxicity Relationship (QSTR) [66], redox potential [67,68], Woodward-Hoffmann rules [69], Michael-type reactions [70], Sn2 reactions [71], multiphilic descriptions [72], etc. Molecular systems include silylenes [73], heterocyclohexanones [74], pyrido-di-indoles [65], bipyridine [75], aromatic and heterocyclic sulfonamides [76], substituted nitrenes and phosphi-nidenes [77], first-row transition metal ions [67], triruthenium ring core structures [78], benzhydryl derivatives [79], multivalent superatoms [80], nitrobenzodifuroxan [70], dialkylpyridinium ions [81], dioxins [82], arsenosugars and thioarsenicals [83], dynamic properties of clusters and nanostructures [84], porphyrin compounds [85-87], and so on. [Pg.189]

In the development of effective catalytic oxidation systems, there is a qualitative correlation between the desirability of the net or terminal oxidant, (OX in equation 1 and DO in equation 2) and the complexity of its chemistry and the difficulty of its use. The desirability of an oxidant is inversely proportional to its cost and directly proportional to the selectivity, rate, and stability of the associated oxidation reaction. The weight % of active oxygen, ease of deployment, and environmental friendliness of the oxidant are also key issues. Pertinent data for representative oxidants are summarized in Table I (4). The most desirable oxidant, in principle, but the one with the most complex chemistry, is O2. The radical chain or autoxidation chemistry inherent in 02-based organic oxidations, whether it is mediated by redox active transition metal ions, nonmetal species, metal oxide surfaces, or other species, is fascinatingly complex and represents nearly a field unto itself (7,75). Although initiation, termination, hydroperoxide breakdown, concentration dependent inhibition... [Pg.69]

The importance of the electron transfer reaction between RS" and an electron acceptor (Reactions 2 and 3) has been amply confirmed by the observation that the least acidic thiols are least resistant to oxidation (2), and by the enormously enhanced rate of reaction in the presence of redox catalysts, such as transition metal ions (13) or organic redox additives (14). In these latter cases, reactions of the type below become important,... [Pg.228]

It has been shown that many redox reactions in anions and similar species may be induced by ligation to transition metal ions. One may consider metal ions as bridging between the oxidant and the oxidized ligand somewhat in an analogous manner to a ligand bridge in a metal-metal redox reaction. [Pg.139]

The formation of ligated transition metal ions at unstable high states of oxidation, its implications in the mechanisms of metal-catalyzed autoxidation, and the effect of configuration of a metal-ligand system on its redox stability have been pointed out. These considerations may be helpful in interpreting more complex metal-ligand systems including metal-enzyme reactions. [Pg.139]

Although zinc itself is not redox-active, some class I enzymes containing zinc in their active sites are known. The most prominent are probably alcohol dehydrogenase and copper-zinc superoxide dismutase (Cu,Zn-SOD). AU have in common that the redox-active agent is another transition-metal ion (copper in Cu,Zn-SOD) or a cofactor such as nicotinamide adenine dinucleotide (NAD+/NADH). The Zn(II) ion affects the redox reaction only in an indirect manner, but is nevCTtheless essential and cannot be regarded simply as a structural factor. [Pg.9]

The crystal structure and the sintering behavior of hexaaluminates was widely investigated. The relation of sintering resistance to anisotropic ion diffusion in the layered alumina phase was clarified to a large extent. Other evidence suggests that combustion activity is obtained through a redox mechanism associated with reversible variation of oxidation state of the transition metal ions in the structure. Mn was the best and most stable active component. However, fundamental and applied studies are needed to better clarify the redox mechanism of the reaction and how it is related to the chemical and structural features of the Mn-containing layered-alumina phase. This could also provide useful information for the development of an optimum catalyst composition,... [Pg.111]

Correlations between structure and catalytic activity have been described for carbonium-ion type reactions (1). Much effort was also spent to establish a correlation between structural and compositional factors and the activity for redox type reactions (1, 9-12). Transition metal ions in zeolites were shown to be active in the oxidation and hydrogenation of hydrocarbons. In this connection various techniques were used to locate the cations in the framework of the faujasite-type zeolites (13-20). These ions migrate upon thermal treatment or by the adsorption of various substances. Thus, methods are needed to determine the location of the cations under reaction conditions. [Pg.449]

Among electrode processes with at least one charge transfer step, several different types of reaction can be found. The simplest interfacial electrochemical reactions are the exchange of electrons across the electrochemical interface by flipping oxidation states of transition metal ions in the electrolyte adjacent to the electrode surface. The electrode in this case is merely the source or sink of electrons, uptaking electrons from the reduced species and releasing them to the oxidized redox species in solution. Examples of simple electron transfer reactions are... [Pg.8]

In the presence of 02, most radicals are converted into the corresponding per-oxyl radicals with the notable exception of heteroatom-centered radicals which do not react with 02 at an appreciable rate (Chap. 8.2). However, even though peroxyl radical reactions may dominate in the reactions induced by the autoxi-dation of Fe(II)EDTA or Fe(II)NTA (Chap. 2.5), in the case of 2 -deoxynucleo-sides the subsequent reactions seem to be considerably modified by the presence of the transition metal ion, i.e. product ratios are found in these reactions which are different from those observed by ionizing radiation in the absence of Fe(II)/ Fe(III) (Murata-Kamiya et al. 1998). A basis for understanding these differences may be the various redox reactions that the peroxyl radicals will undergo with Fe(II)/Fe(III) (cf. Yurkova et al. 1999 Theruvathu et al. 2001 see also Chaps 2.5 and 8.3). [Pg.251]

Numerous transition metals ions form cluster complexes with chalcogenide anions [42-52], Iron and sulphur are unique elements in the sense that no two other elements can generate such a large diversity of cluster structures. This is the consequence of two stable oxidation states of iron ions and strong Fe-S bonds of significantly covalent character [53], Moreover, numerous structures are stable in several oxidation states, so these clusters serve as electron reservoirs in biological systems [51], This is why iron-sulphur proteins usually catalyze redox reactions. [Pg.162]


See other pages where Transition metal ions redox reactions is mentioned: [Pg.284]    [Pg.284]    [Pg.613]    [Pg.623]    [Pg.248]    [Pg.323]    [Pg.234]    [Pg.384]    [Pg.163]    [Pg.164]    [Pg.440]    [Pg.23]    [Pg.69]    [Pg.1243]    [Pg.127]    [Pg.385]    [Pg.284]    [Pg.10]    [Pg.10]    [Pg.248]    [Pg.764]    [Pg.717]    [Pg.773]    [Pg.833]    [Pg.21]    [Pg.75]    [Pg.245]    [Pg.387]    [Pg.100]    [Pg.61]    [Pg.390]    [Pg.198]   
See also in sourсe #XX -- [ Pg.623 , Pg.624 , Pg.625 , Pg.626 , Pg.627 , Pg.628 ]




SEARCH



Metals redox reactions

Reactions transition metal ions

Redox metal

Redox metal ions

Redox metallic ions

Transition ions

Transition metal ions

Transition metal reactions

© 2024 chempedia.info