Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition-metal coordination intermediates

Electron delocalization between the metal atom and a polypyridine ligand and between polypyridine ligands within the coordination sphere is weak. (Complexes of first-row transition metals in intermediate oxidation states and complexes of a few unusual polypyridines (abpy) are the only exceptions.)... [Pg.1526]

The solid anhydrous halides of some of the transition metals are often intermediate in character between ionic and covalent their structures are complicated by (a) the tendency of the central metal ion to coordinate the halide ions around it, to form an essentially covalent complex, (b) the tendency of halide ions to bridge, or link, two metal ions, again tending to covalency (cf. aluminium chloride, p. 153 and iron(III) chloride, p. 394). [Pg.344]

Section 14 15 Coordination polymerization of ethylene and propene has the biggest eco nomic impact of any organic chemical process Ziegler-Natta polymer ization IS carried out using catalysts derived from transition metals such as titanium and zirconium tt Bonded and ct bonded organometallic com pounds are intermediates m coordination polymerization... [Pg.617]

Unlike nitric oxide, NO, the monomeric radical sulfur nitride, NS, is only known as a short-lived intermediate in the gas phase. Nevertheless the properties of this important diatomic molecule have been thoroughly investigated by a variety of spectroscopic and other physical techniques (Section 5.2.1). The NS molecule is stabilized by coordination to a transition metal and a large number of complexes, primarily with metals from Groups 6, 7, 8 and 9, are known. Several detailed reviews of the topic have been published. ... [Pg.123]

No single mechanism accounts for all the reactions. One pathway involves a concerted one-step process involving a cyclic transition state. This of necessity affords a c -product. Another possibility, more favoured in polar solvents, involves a cationic 5-coordinate intermediate [IrX(A)(CO)L2]+, which undergoes subsequent nucleophilic attack by B-. Other possibilities include a SN2 route, where the metal polarizes AB before generating the nucleophile, and radical routes. Studies are complicated by the fact that the thermodynamically more stable isolated product may not be the same as the kinetic product formed by initial addition. [Pg.141]

Two possible reasons may be noted by which just the coordinatively insufficient ions of the low oxidation state are necessary to provide the catalytic activity in olefin polymerization. First, the formation of the transition metal-carbon bond in the case of one-component catalysts seems to be realized through the oxidative addition of olefin to the transition metal ion that should possess the ability for a concurrent increase of degree of oxidation and coordination number (177). Second, a strong enough interaction of the monomer with the propagation center resulting in monomer activation is possible by 7r-back-donation of electrons into the antibonding orbitals of olefin that may take place only with the participation of low-valency ions of the transition metal in the formation of intermediate 71-complexes. [Pg.203]

Investigations of silicon-metal systems are of fundamental interest, since stable coordination compounds with low valent silicon are still rare [64], and furthermore, silicon transition-metal complexes have a high potential for technical applications. For instance, coordination compounds of Ti, Zr, and Hf are effective catalysts for the polymerization of silanes to oligomeric chain-silanes. The mechanism of this polymerization reaction has not yet been fully elucidated, but silylene complexes as intermediates have been the subject of discussion. Polysilanes find wide use in important applications, e.g., as preceramics [65-67] or as photoresists [68-83],... [Pg.4]

The dehydrogenative coupling of silanes does not stop at the stage of disilanes in the coordination sphere of early transition metals like Zr and Hf, but chain polymers of low molecular weight are formed. As reactive intermediates in this reaction, silylene complexes are also assumed. However, alternative mechanisms have been discussed (sect. 2.5.4). [Pg.14]

Metal polysulfido complexes have attracted much interest not only from the viewpoint of fundamental chemistry but also because of their potential for applications. Various types of metal polysulfido complexes have been reported as shown in Fig. 1. The diversity of the structures results from the nature of sulfur atoms which can adopt a variety of coordination environments (mainly two- and three-coordination) and form catenated structures with various chain lengths. On the other hand, transition metal polysulfides have attracted interest as catalysts and intermediates in enzymatic processes and in catalytic reactions of industrial importance such as the desulfurization of oil and coal. In addition, there has been much interest in the use of metal polysulfido complexes as precursors for metal-sulfur clusters. The chemistry of metal polysulfido complexes has been studied extensively, and many reviews have been published [1-10]. [Pg.154]


See other pages where Transition-metal coordination intermediates is mentioned: [Pg.315]    [Pg.152]    [Pg.389]    [Pg.124]    [Pg.347]    [Pg.292]    [Pg.198]    [Pg.155]    [Pg.343]    [Pg.42]    [Pg.423]    [Pg.389]    [Pg.23]    [Pg.43]    [Pg.210]    [Pg.504]    [Pg.4753]    [Pg.3930]    [Pg.84]    [Pg.265]    [Pg.299]    [Pg.823]    [Pg.918]    [Pg.47]    [Pg.194]    [Pg.203]    [Pg.2]    [Pg.127]    [Pg.168]    [Pg.187]    [Pg.95]    [Pg.859]    [Pg.79]    [Pg.277]    [Pg.89]    [Pg.63]    [Pg.279]    [Pg.192]    [Pg.615]    [Pg.15]    [Pg.52]    [Pg.61]   


SEARCH



Metallated Intermediates

Transition coordinate

Transition metal intermediates

Transition-metal coordination

Transitional coordinates

© 2024 chempedia.info