Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal complexes rates

Because of their high negative normal redox potentials, Sm + and Yb + are able to reduce many ions. This property has not yet been used for preparative purposes but it has been exploited in mechanistic studies of electron transfer reactions involving transition metal complexes. Rate constants of reactions between Yb + ions (prepared by electrolytic reduction of Yb " ) and some Co " " complexes were measured (Christensen et al., 1970). More accurate kinetic measurements, with the pulse radiolysis technique, have been made (Faraggi et al., 1973) on the reactions of Yb + and Sm + with [Co(NH3)5Xp+ (X = F, Cl, Br, I, N3, NCS, OH, CN), [Co(NH3)d +, [Ru(NHj)5X]2+ (X = Cl, Br, I, OH) and [Ru H3)J +. The reactions were performed in deaerated aqueous solutions containing tert-butyl alcohol. [Pg.549]

The electron transfer rates in biological systems differ from those between small transition metal complexes in solution because the electron transfer is generally long-range, often greater than 10 A [1]. For long-range transfer (the nonadiabatic limit), the rate constant is... [Pg.394]

One of the commonest reactions in the chemistry of transition-metal complexes is the replacement of one ligand by another ligand (Fig. 9-3) - a so-called substitution reaction. These reactions proceed at a variety of rates, the half-lives of which may vary from several days for complexes of rhodium(iii) or cobalt(m) to about a microsecond with complexes of titanium(iii). [Pg.186]

As already mentioned, complexes of chromium(iii), cobalt(iii), rhodium(iii) and iridium(iii) are particularly inert, with substitution reactions often taking many hours or days under relatively forcing conditions. The majority of kinetic studies on the reactions of transition-metal complexes have been performed on complexes of these metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to those in organic chemistry, and the techniques which have been developed for the investigation of such reactions are readily available and appropriate. The time scales of minutes to days are compatible with relatively slow spectroscopic techniques. The second reason is associated with the kinetic inertness of the products. If the products are non-labile, valuable stereochemical information about the course of the substitution reaction may be obtained. Much is known about the stereochemistry of ligand substitution reactions of cobalt(iii) complexes, from which certain inferences about the nature of the intermediates or transition states involved may be drawn. This is also the case for substitution reactions of square-planar complexes of platinum(ii), where study has led to the development of rules to predict the stereochemical course of reactions at this centre. [Pg.187]

Few quantitative data are available on the relative nucleophilicities of L toward various alkyl carbonyls. The rates of the reaction of CpMo(CO)3Me with L in toluene (Table II) decrease as a function of the latter reactant P( -Bu)3 > P( -OBu)j > PPhj > P(OPh)j, but the spread is relatively small (<8). The above order is that customarily observed for 8 2 reactions of low-valent transition metal complexes (J, 214). Interestingly, neither CpMo(CO)3Me nor CpFe(CO)2Me reacts with 1 or N, S, and As donor ligands 28, 79). This is in direct contrast to the insertion reactions of MeMn(CO)5 which manifest much less selectivity toward various L (see Section VI,B,C,D for details). [Pg.100]

The interconversion between different spin states is closely related to the intersystem crossing process in excited states of transition-metal complexes. Hence, much of the interest in the rates of spin-state transitions arises from their relevance to a better understanding of intersystem crossing phenomena. The spin-state change can alternatively be described as an intramolecular electron transfer reaction [34], Therefore, rates of spin-state transitions may be employed to assess the effect of spin multiplicity changes on electron transfer rates. These aspects have been covered in some detail elsewhere [30]. [Pg.59]

The cyanide exchange on [M(CN)4]2 with M = Pt, Pd, and Ni is a rare case in which mechanistic comparisons between 3d, 4d, and 5d transition-metal complexes. Surprisingly, the behavior of these metal square-planar centers leads to mechanistic diversity involving pentacoordinated species or transition states as well as protonated complexes. The reactivities of these species are strongly pH-dependent, covering 15 orders of magnitude in reaction rates.85... [Pg.562]

It has been widely accepted that the carbene-transfer reaction using a diazo compound and a transition metal complex proceeds via the corresponding metal carbenoid species. Nishiyama et al. characterized spectroscopically the structure of the carbenoid intermediate that underwent the desired cyclopropanation with high enantio- and diastereoselectivity, derived from (91).254,255 They also isolated a stable dicarbonylcarbene complex and demonstrated by X-ray analysis that the carbene moiety of the complex was almost parallel in the Cl—Ru—Cl plane and perpendicular to the pybox plane (vide infra).255 These results suggest that the rate-determining step of metal-catalyzed cyclopropanation is not carbenoid formation, but the carbene-transfer reaction.254... [Pg.249]

Cyclic chain termination with aromatic amines also occurs in the oxidation of tertiary aliphatic amines (see Table 16.1). To explain this fact, a mechanism of the conversion of the aminyl radical into AmH involving the (3-C—H bonds was suggested [30]. However, its realization is hampered because this reaction due to high triplet repulsion should have high activation energy and low rate constant. Since tertiary amines have low ionization potentials and readily participate in electron transfer reactions, the cyclic mechanism in systems of this type is realized apparently as a sequence of such reactions, similar to that occurring in the systems containing transition metal complexes (see below). [Pg.574]

Many transition metal complexes have been considered as synzymes for superoxide anion dismutation and activity as SOD mimics. The stability and toxicity of any metal complex intended for pharmaceutical application is of paramount concern, and the complex must also be determined to be truly catalytic for superoxide ion dismutation. Because the catalytic activity of SOD1, for instance, is essentially diffusion-controlled with rates of 2 x 1 () M 1 s 1, fast analytic techniques must be used to directly measure the decay of superoxide anion in testing complexes as SOD mimics. One needs to distinguish between the uncatalyzed stoichiometric decay of the superoxide anion (second-order kinetic behavior) and true catalytic SOD dismutation (first-order behavior with [O ] [synzyme] and many turnovers of SOD mimic catalytic behavior). Indirect detection methods such as those in which a steady-state concentration of superoxide anion is generated from a xanthine/xanthine oxidase system will not measure catalytic synzyme behavior but instead will evaluate the potential SOD mimic as a stoichiometric superoxide scavenger. Two methodologies, stopped-flow kinetic analysis and pulse radiolysis, are fast methods that will measure SOD mimic catalytic behavior. These methods are briefly described in reference 11 and in Section 3.7.2 of Chapter 3. [Pg.270]

The NO/NO+ and NO/NO- self-exchange rates are quite slow (42). Therefore, the kinetics of nitric oxide electron transfer reactions are strongly affected by transition metal complexes, particularly by those that are labile and redox active which can serve to promote these reactions. Although iron is the most important metal target for nitric oxide in mammalian biology, other metal centers might also react with NO. For example, both cobalt (in the form of cobalamin) (43,44) and copper (in the form of different types of copper proteins) (45) have been identified as potential NO targets. In addition, a substantial fraction of the bacterial nitrite reductases (which catalyze reduction of NO2 to NO) are copper enzymes (46). The interactions of NO with such metal centers continue to be rich for further exploration. [Pg.220]

It has long been assumed that the rates of inner-sphere electron-transfer reactions for transition-metal complexes should be sensitive to the nature of the donor and acceptor orbital symmetries. Efforts to... [Pg.370]

However, because of the mostly very slow electron transfer rate between the redox active protein and the anode, mediators have to be introduced to shuttle the electrons between the enzyme and the electrode effectively (indirect electrochemical procedure). As published in many papers, the direct electron transfer between the protein and an electrode can be accelerated by the application of promoters which are adsorbed at the electrode surface [27], However, this type of electrode modification, which is quite useful for analytical studies of the enzymes or for sensor applications is in most cases not stable and effective enough for long-term synthetic application. Therefore, soluble redox mediators such as ferrocene derivatives, quinoid compounds or other transition metal complexes are more appropriate for this purpose. [Pg.96]

The curing reaction can be carried out thermally or with the addition of a catalyst. The thermal cure is strongly influenced by impurities associated with the synthesis. The greater the degree of monomer purity, the more slowly the thermal cure proceeds. If the monomer is sufficiently purified, the cure rate can be predictably controlled by the addition of catalysts. As with the aromatic cyanate esters, the fluoromethylene cyanate esters can be cured by the addition of active hydrogen compounds and transition metal complexes. Addition of 1.5 wt% of the fluorinated diol precursor serves as a suitable catalyst.9 The acetylacetonate transition metal salts, which work well for the aromatic cyanate esters,1 are also good catalysts. [Pg.30]

Furthermore, the method of orientation selection can only be applied to systems with an electron spin-spin cross relaxation time Tx much larger than the electron spin-lattice relaxation time Tle77. In this case, energy exchange between the spin packets of the polycrystalline EPR spectrum by spin-spin interaction cannot take place. If on the other hand Tx < Tle, the spin packets are coupled by cross relaxation, and a powder-like ENDOR signal will be observed77. Since T 1 is normally the dominant relaxation rate in transition metal complexes, the orientation selection technique could widely be applied in polycrystalline and frozen solution samples of such systems (Sect. 6). [Pg.27]

Reaction rates are macroscopic averages of the number of microscopical molecules that pass from the reactant to the product valley in the potential hypersurface. An estimation of this rate can be obtained from the energy of the highest point in the reaction path, the transition state. This approach will however fail when the reaction proceeds without an enthalpic barrier or when there are many low frequency modes. The study of these cases will require the analysis of the trajectory of the molecule on the potential hypersurface. This idea constitutes the basis of molecular dynamics (MD) [96]. Molecular dynamics were traditionally too computationally demanding for transition metal complexes, but things seem now to be changing with the use of the Car-Parrinello (CP) method [97]. This approach has in fact been already succesfully applied to the study of the catalyzed polymerization of olefins [98]. [Pg.18]

Many examples of the phase-transfer catalysed epoxidation of a,(3-unsaturated carbonyl compounds using sodium hypochlorite have been reported [e.g. 7-10]. The addition of transition metal complexes also aids the reaction [11], but advantages in reaction time or yields are relatively insignificant, whereas the use of hexaethyl-guanidinium chloride, instead of a tetra-alkylammonium salt, enhances the rate of epoxidation while retaining the high yields (>95%) [10]. Intermediate (3-haloalkanols are readily converted into the oxiranes under basic conditions in the presence of benzyltriethylammonium chloride [12]. [Pg.434]

In this spirit, an attempt will be made to account for the magnitude of pressure effects on ligand substitution reaction rates. Attention will necessarily be confined to a few simple model systems two recent reviews (1, 2) of pressure effects on reactions of transition metal complexes in solution may be consulted for more comprehensive surveys of the field. [Pg.45]

A quantitative determination of such matrix elements (to be elaborated below) is of crucial importance because it not only allows an absolute evaluation of the desired rate constants but also helps to reveal the qualitative aspects of the mechanism. In particular, questions regarding the magnitude of electronic transmission factors and the relative importance of ligands and metal ions in facilitating electron exchange between transition metal complexes can be assessed from a knowledge of... [Pg.256]

These regions are particularly useful since few, if any, reactions of transition metal complexes are unaccompanied by spectral absorption changes in these regions. We first show how optical absorbances may be substitued for the concentration changes required in deriving the rate law. [Pg.154]

Seventeen years is a long time between editions of a book. In order to add some of the vast amount of new material which has been published in that time, I have needed to abridge the older edition and in so doing apologise to oldtimers (myself included ) whose work may have been removed or modified. Nevertheless, the approach used is unchanged. In the first three chapters I have dealt with the acquisition of experimental data and discussed use for building up the rate law and in the deduction of mechanism. In the second part of the book, the mechanistic behavior of transition metal complexes of the Werner type is detailed, using extensively the principles and concepts developed in the first part. [Pg.470]

As the above discussion indicates, assigning mechanisms to simple anation reactions of transition metal complexes is not simple. The situation becomes even more difficult for a complex enzyme system containing a metal cofactor at an active site. Methods developed to study the kinetics of enzymatic reactions according to the Michaelis-Menten model will be discussed in Section 2.2.4. Since enzyme-catalyzed reactions are usually very fast, experimentahsts have developed rapid kinetic techniques to study them. Techniques used by bioinorganic chemists to study reaction rates will be further detailed in Section 3.7.2.1 and 3.72.2. [Pg.13]


See other pages where Transition metal complexes rates is mentioned: [Pg.169]    [Pg.121]    [Pg.345]    [Pg.102]    [Pg.83]    [Pg.76]    [Pg.267]    [Pg.847]    [Pg.35]    [Pg.574]    [Pg.213]    [Pg.193]    [Pg.78]    [Pg.356]    [Pg.257]    [Pg.1329]    [Pg.1416]    [Pg.122]    [Pg.68]    [Pg.113]    [Pg.72]    [Pg.77]    [Pg.276]    [Pg.61]    [Pg.90]    [Pg.174]    [Pg.13]    [Pg.34]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Complexation rates

Metal complexation rates

Rate constant transition metal complexes

Transition rates

© 2024 chempedia.info