Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition complex chemistry

Returning to molecular orbital diagram in Fig. 1.21, a series of features of special relevance for understanding metal transition complex chemistry are apparent ... [Pg.27]

This is surprising in view of the fact that a great deal of effort was made to study transition metal complexes in chloroaluminate ionic liquids in the 1980s and early 1990s (see Section 6.1 for some examples). The investigations at this time generally started with electrochemical studies [41], but also included spectroscopic and complex chemistry experiments [42]. [Pg.228]

Low oxidation states - An important characteristic of transition metal chemistry is the formation of compounds with low (often zero or negative) oxidation states. This has little parallel outside the transition elements. Such complexes are frequently associated with ligands like carbon monoxide or alkenes. Compounds analogous to Fe(CO)s, [Ni(cod)2] (cod = 1,4-cyclooctadiene) or [Pt(PPh3]3] are very rarely encountered outside the transition-metal block. The study of the low oxidation compounds is included within organometallic chemistry. We comment about the nature of the bonding in such compounds in Chapter 6. [Pg.18]

Two other, closely related, consequences flow from our central proposition. If the d orbitals are little mixed into the bonding orbitals, then, by the same token, the bond orbitals are little mixed into the d. The d electrons are to be seen as being housed in an essentially discrete - we say uncoupled - subset of d orbitals. We shall see in Chapter 4 how this correlates directly with the weakness of the spectral d-d bands. It also follows that, regardless of coordination number or geometry, the separation of the d electrons implies that the configuration is a significant property of Werner-type complexes. Contrast this emphasis on the d" configuration in transition-metal chemistry to the usual position adopted in, say, carbon chemistry where sp, sp and sp hybrids form more useful bases. Put another way, while the 2s... [Pg.25]

There is an interesting paradox in transition-metal chemistry which we have mentioned earlier - namely, that low and high oxidation state complexes both tend towards a covalency in the metal-ligand bonding. Low oxidation state complexes are stabilized by r-acceptor ligands which remove electron density from the electron rich metal center. High oxidation state complexes are stabilized by r-donor ligands which donate additional electron density towards the electron deficient metal centre. [Pg.184]

In all these discussions, we separate, as best we might, the effects of the d electrons upon the bonding electrons from the effects of the bonding electrons upon the d electrons. The latter takes us into crystal- and ligand-field theories, the former into the steric roles of d electrons and the geometries of transition-metal complexes. Both sides of the coin are relevant in the energetics of transition-metal chemistry, as is described in later chapters. [Pg.219]

There is a large and growing field of transition metal chemistry in which silicon-containing ligands are involved. The object of this review is to provide a guide to the literature on those aspects of the subject described by the title and to deal in detail with topics not treated specifically elsewhere. Section II is concerned with complexes having Si-transition metal (M) bonds, Section III with the role of transition metal complexes in hydrosilylation, and Section IV with complexes having Si—C—M bonds. [Pg.253]

Silicon-transition metal chemistry is a relatively new area. The work of Hein and his associates (1941) on Sn—Co derivatives established the possibility of forming bonds between a Group IVB metal and a transition element 139), but it was another fifteen years before CpFe(CO)2SiMej 203), the first of many silyl derivatives, was synthesized. The interest in these compounds derives from (1) comparison with the corresponding alkyl- and Ge-, Sn-, and Pb- transition metal (M) complexes, including the role of ir-back-bonding from filled d orbitals of M into empty d orbitals on Si (or other Group IVB metal), and (2) expectation of useful catalytic properties from such heteronuclear derivatives. [Pg.254]

Spectroscopy of the PES for reactions of transition metal (M ) and metal oxide cations (MO ) is particularly interesting due to their rich and complex chemistry. Transition metal M+ can activate C—H bonds in hydrocarbons, including methane, and activate C—C bonds in alkanes [18-20] MO are excellent (and often selective) oxidants, capable of converting methane to methanol [21] and benzene to phenol [22-24]. Transition metal cations tend to be more reactive than the neutrals for two general reasons. First, most neutral transition metal atoms have a ground electronic state, and this... [Pg.333]

Byabartta, P. (2007) Gold(l)-gold(III)-4,4 -bpy-phosphrne complexes synthesis and multinuclear NMR study. Transition Metal Chemistry, 32, 314. [Pg.83]

Usui, Y, Hrrano, M., Fukuoka, A. and Komiya, S. (1997) Hydrogen abstraction from transition metal hydrides by gold alkoxides giving gold-containing heterodinuclear complexes. Chemistry Letters, 26, 981. [Pg.89]

In the sixties of past century, a few patents issued to Bergbau Chemie [5,48,49] and to Mobil Oil [50-52], respectively described the use of CFPs as supports for catalytically active metal nanoclusters and as carriers for heterogenized metal complexes of catalytic relevance. For the latter catalysts the term hybrid phase catalysts later came into use [53,54], At that time coordination chemistry and organo-transition metal chemistry were in full development. Homogeneous transition metal catalysis was expected to grow in industrial relevance [54], but catalyst separation was generally a major problem for continuous processing. That is why the concept of hybrid catalysis became very popular in a short time [55]. [Pg.208]

Vasudevan P, Santosh, Mann N, Tyagi S. 1990. Transition metal complexes of porphyrins and phthalocyanines as electiocatalysts for dioxygen reduction. Transition Metal Chemistry, 15, 81-90. [Pg.692]

As heavier analogs of carbenes141) stannylenes can be used as ligands in transition-metal chemistry. The stability of carbene complexes is often explained by a synergetic c,7t-effect cr-donation from the lone electron pair of the carbon atom to the metal is compensated by a a-backdonation from filled orbitals of the metal to the empty p-orbital of the carbon atom. This concept cannot be transferred to stannylene complexes. Stannylenes are poor p-a-acceptors no base-stabilized stannylene (SnX2 B, B = electron donor) has ever been found to lose its base when coordinated with a transition metal (M - SnXj B). Up to now, stannylene complexes of transition metals were only synthesized starting from stable monomoleeular stannylenes. Divalent tin compounds are nevertheless efficient cr-donors as may be deduced from the displacement reactions (17)-(20) which open convenient routes to stannylene complexes. [Pg.36]

Transition-metal chemistry is currently one of the most rapidly developing research areas. The record of investigation for compounds with metal silicon bonds is closely comparable to that for silicones it was in 1941 when Hein discovered the first metal silicon complex, followed by Wilkinson in 1956. A milestone in the development of this chemistry was Speier s discovery of the catalytic activity of nobel metal complexes in hydrosilylation reactions in 1977. Hydrosilylation is widely used in modem organic syntheses as well as in the preparation of organo functionalized silicones. Detailed investigations of the reaction mechanisms of various catalysts continue to be subject of intense research efforts. [Pg.167]

The similarity, then, between carbene and carbyne complex chemistry of Group 8a transition metals, as well as of Group 6a and 7a metals, is apparent. [Pg.134]

Transition metal carbyne complexes are still relatively uncommon as only a few synthetic approaches to these compounds has proved generally applicable. In addition to making the initial characterization (723), the Fischer group has made the largest contribution to carbyne complex chemistry, with some 200 mononuclear complexes of Group 6 and 7 metals having been prepared. [Pg.181]

Mixed organo antimony ligands with one or two electronegative groups have been only rarely used in transition metal chemistry. The resulting complexes belong to type 3 or 4 with -Sb coordination (Scheme 2). [Pg.98]

Keto Derivatives of Group IV Organometalloids, 7, 95 Lewis Base-Metal Carbonyl Complexes, 3, 181 Ligand Substitution in Transition Metal ir-Complexes, 10, 347 Literature of Organo-Transition Metal Chemistry 1950-1970, 10, 273 Literature of Organo-Transition Metal Chemistry 1971,11, 447 Literature of Organo-Transition Metal Chemistry 1972, 12, 379 Mass Spectra of Metallocenes and Related Compounds, 8, 211 Mass Spectra of Organometallic Compounds, 6, 273... [Pg.510]

The metal complexes discussed thus far bear little resemblance to the vast majority of common transition-metal complexes. Transition-metal chemistry is dominated by octahedral, square-planar, and tetrahedral coordination geometries, mixed ligand sets, and adherence to the 18-electron rule. The following three sections introduce donor-acceptor interactions that, although not unique to bonding in the d block, make the chemistry of the transition metals so distinctive. [Pg.447]

Indeed, the general tendency toward 3c/4e bonding in transition-metal complexes is so pronounced that such hypervalency should be considered the rule, rather than the exception, in transition-metal chemistry. [Pg.448]


See other pages where Transition complex chemistry is mentioned: [Pg.204]    [Pg.99]    [Pg.24]    [Pg.125]    [Pg.126]    [Pg.185]    [Pg.187]    [Pg.62]    [Pg.88]    [Pg.106]    [Pg.316]    [Pg.332]    [Pg.313]    [Pg.269]    [Pg.216]    [Pg.268]    [Pg.55]    [Pg.645]    [Pg.235]    [Pg.269]    [Pg.282]    [Pg.370]    [Pg.169]    [Pg.610]    [Pg.616]    [Pg.216]    [Pg.75]    [Pg.451]    [Pg.574]   
See also in sourсe #XX -- [ Pg.355 ]




SEARCH



Basic Chemistry of Transition Metal Complexes and Their Reaction Patterns

Chemistry complex

Chemistry of Transition Metal Carbene Complexes

Inorganic chemistry transition metal coordination complexes

Structural Chemistry of Organo-Transition Metal Complexes

Transition chemistry

Transition metal complexes chemistry

© 2024 chempedia.info