Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron density additivity

The region of high electron density between the doubly bonded carbon atoms gives alkenes an additional reactivity and in addition to burning and reacting with halogens, alkenes will add on other molecules for example ... [Pg.173]

The most common way of including relativistic effects in a calculation is by using relativisticly parameterized effective core potentials (RECP). These core potentials are included in the calculation as an additional term in the Hamiltonian. Core potentials must be used with the valence basis set that was created for use with that particular core potential. Core potentials are created by htting a potential function to the electron density distribution from an accurate relativistic calculation for the atom. A calculation using core potentials does not have any relativistic terms, but the effect of relativity on the core electrons is included. [Pg.262]

Pd(II) compounds coordinate to alkenes to form rr-complexes. Roughly, a decrease in the electron density of alkenes by coordination to electrophilic Pd(II) permits attack by various nucleophiles on the coordinated alkenes. In contrast, electrophilic attack is commonly observed with uncomplexed alkenes. The attack of nucleophiles with concomitant formation of a carbon-palladium r-bond 1 is called the palladation of alkenes. This reaction is similar to the mercuration reaction. However, unlike the mercuration products, which are stable and isolable, the product 1 of the palladation is usually unstable and undergoes rapid decomposition. The palladation reaction is followed by two reactions. The elimination of H—Pd—Cl from 1 to form vinyl compounds 2 is one reaction path, resulting in nucleophilic substitution of the olefinic proton. When the displacement of the Pd in 1 with another nucleophile takes place, the nucleophilic addition of alkenes occurs to give 3. Depending on the reactants and conditions, either nucleophilic substitution of alkenes or nucleophilic addition to alkenes takes place. [Pg.21]

Usually, iodides and bromides are used for the carbonylation, and chlorides are inert. I lowever, oxidative addition of aryl chlorides can be facilitated by use of bidcntatc phosphine, which forms a six-membered chelate structure and increa.scs (he electron density of Pd. For example, benzoate is prepared by the carbonylation of chlorobenzene using bis(diisopropylphosphino)propane (dippp) (456) as a ligand at 150 [308]. The use of tricyclohexylphosphine for the carbonylation of neat aryl chlorides in aqueous KOH under biphasic conditions is also recommended[309,310]. [Pg.190]

The diminished rr electron density m the double bond makes a p unsaturated aide hydes and ketones less reactive than alkenes toward electrophilic addition Electrophilic reagents—bromine and peroxy acids for example—react more slowly with the carbon-carbon double bond of a p unsaturated carbonyl compounds than with simple alkenes... [Pg.776]

In addition to total energy and gradient, HyperChem can use quantum mechanical methods to calculate several other properties. The properties include the dipole moment, total electron density, total spin density, electrostatic potential, heats of formation, orbital energy levels, vibrational normal modes and frequencies, infrared spectrum intensities, and ultraviolet-visible spectrum frequencies and intensities. The HyperChem log file includes energy, gradient, and dipole values, while HIN files store atomic charge values. [Pg.51]

For a quantum mechanical calculation, the single point calculation leads to a wave function for the molecular system and considerably more information than just the energy and gradient are available. In principle, any expectation value might be computed. You can get plots of the individual orbitals, the total (or spin) electron density and the electrostatic field around the molecule. You can see the orbital energies in the status line when you plot an orbital. Finally, the log file contains additional information including the dipole moment of the molecule. The level of detail may be controlled by the PrintLevel entry in the chem.ini file. [Pg.301]

Pyrazine and its derivatives have been extensively studied by proton and NMR spectroscopy and conflicting reports on the reliability of additivity rules and/or correlation of chemical shifts with calculated electron densities have appeared. [Pg.159]

These effects can be attributed mainly to the inductive nature of the chlorine atoms, which reduces the electron density at position 4 and increases polarization of the 3,4-double bond. The dual reactivity of the chloropteridines has been further confirmed by the preparation of new adducts and substitution products. The addition reaction competes successfully, in a preparative sense, with the substitution reaction, if the latter is slowed down by a low temperature and a non-polar solvent. Compounds (12) and (13) react with dry ammonia in benzene at 5 °C to yield the 3,4-adducts (IS), which were shown by IR spectroscopy to contain little or none of the corresponding substitution product. The adducts decompose slowly in air and almost instantaneously in water or ethanol to give the original chloropteridine and ammonia. Certain other amines behave similarly, forming adducts which can be stored for a few days at -20 °C. Treatment of (12) and (13) in acetone with hydrogen sulfide or toluene-a-thiol gives adducts of the same type. [Pg.267]

Substituents are expected to alter the electron density at the multiply-bonded nitrogen atom, and therefore the basicity, in a manner similar to that found in the pyridine series. The rather limited data available appear to bear out these assumptions. The additional ring nitrogen atoms in triazoles, oxadiazoles, etc. are quite strongly base-weakening this is as... [Pg.49]

The amplitudes and the phases of the diffraction data from the protein crystals are used to calculate an electron-density map of the repeating unit of the crystal. This map then has to be interpreted as a polypeptide chain with a particular amino acid sequence. The interpretation of the electron-density map is complicated by several limitations of the data. First of all, the map itself contains errors, mainly due to errors in the phase angles. In addition, the quality of the map depends on the resolution of the diffraction data, which in turn depends on how well-ordered the crystals are. This directly influences the image that can be produced. The resolution is measured in A... [Pg.381]

In addition to dielectric property determinations, one also can measure valence electron densities from the low-loss spectrum. Using the simple free electron model one can show that the bulk plasmon energy E is governed by the equation ... [Pg.140]


See other pages where Electron density additivity is mentioned: [Pg.49]    [Pg.132]    [Pg.318]    [Pg.59]    [Pg.377]    [Pg.487]    [Pg.49]    [Pg.49]    [Pg.660]    [Pg.20]    [Pg.49]    [Pg.132]    [Pg.318]    [Pg.59]    [Pg.377]    [Pg.487]    [Pg.49]    [Pg.49]    [Pg.660]    [Pg.20]    [Pg.186]    [Pg.1406]    [Pg.1449]    [Pg.1678]    [Pg.136]    [Pg.50]    [Pg.91]    [Pg.113]    [Pg.174]    [Pg.175]    [Pg.231]    [Pg.325]    [Pg.3]    [Pg.114]    [Pg.49]    [Pg.444]    [Pg.417]    [Pg.25]    [Pg.204]    [Pg.266]    [Pg.183]    [Pg.827]    [Pg.848]    [Pg.60]    [Pg.339]    [Pg.141]    [Pg.277]    [Pg.4]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 , Pg.177 ]




SEARCH



Electron addition

© 2024 chempedia.info