Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective toxicity

Similarly, the reaction of nitro compounds with the M-Boc aromatic imines 86 occurred in the presence of the enantiopure protic catalyst 87, which is a white, crystalline bench-stable salt [52] (Scheme 15). The reactions of ni-tromethane, very slow at - 20 °C, were accelerated in the presence of 10 mol % of 87, and the /3-amino compounds 88 were obtained with moderate yields and moderate to high enantioselectivities. Positive results were also obtained in the corresponding reactions of nitropropane to give the products 90. Hence, the primary diamines 89 and 91 are available by this route, which is advantageous for the significantly lower cost and toxicity of the catalyst and its easy removal from the reaction mixture simply by a basic wash. These results should stimulate further research on the development of new acid-catalyzed systems. [Pg.19]

Muller et al. have also examined the enantioselectivity and the stereochemical course of copper-catalyzed intramolecular CH insertions of phenyl-iodonium ylides [34]. The decomposition of diazo compounds in the presence of transition metals leads to typical reactions for metal-carbenoid intermediates, such as cyclopropanations, insertions into X - H bonds, and formation of ylides with heteroatoms that have available lone pairs. Since diazo compounds are potentially explosive, toxic, and carcinogenic, the number of industrial applications is limited. Phenyliodonium ylides are potential substitutes for diazo compounds in metal-carbenoid reactions. Their photochemical, thermal, and transition-metal-catalyzed decompositions exhibit some similarities to those of diazo compounds. [Pg.80]

Besides the silyl enolate-mediated aldol reactions, organotin(IY) enolates are also versatile nucleophiles toward various aldehydes in the absence or presence of Lewis acid.60 However, this reaction requires a stoichiometric amount of the toxic trialkyl tin compound, which may limit its application. Yanagisawa et al.61 found that in the presence of one equivalent of methanol, the aldol reaction of an aldehyde with a cyclohexenol trichloroacetate proceeds readily at 20°C, providing the aldol product with more than 70% yield. They thus carried out the asymmetric version of this reaction using a BINAP silver(I) complex as chiral catalyst (Scheme 3-34). As shown in Table 3-8, the Sn(IY)-mediated aldol reaction results in a good diastereoselectivity (,anti/syn ratio) and also high enantioselectivity for the major component. [Pg.163]

To suppress the noncatalyzed reaction (which decreases the enantioselec-tivity) between acetone cyanohydrin and the substrate, ethyl acetate is required as a co-solvent, and a low reaction temperature is also essential. Han et al.22 found that in organic solution with a trace amount of water the above reaction proceeds with the same high enantioselectivity as in the presence of an aqueous buffer. The reaction can be carried out at a wide range of temperatures from 0° to 30° C. To avoid using highly toxic potassium or sodium cyanide, acetone cyanohydrin is used as a cyano donor. [Pg.457]

Subsequently, it was found that aldehydes could be used as a CO source rather than the toxic CO gas. However, the choice of aldehydes proved to be very important for example, when Shibata used cinnamaldehyde and Chan used decanal, highly enantioselective Ir-catalyzed Pauson-Khand-type reactions were achieved independently [30b, 32] (Scheme 11.20). Whilst Shibata realized at an early stage that the Rh-tolBlNAP complex-catalyzed enantioselective Pauson-Khand-type reaction served as a CO source [33], it was apparent that the Ir-catalysts could induce a greater enantioselectivity. [Pg.285]

Cyanation of aldehydes and ketones is an important chemical process for C C bond formation." " Trimethylsilyl cyanide and/or HCN are commonly used as cyanide sources. The intrinsic toxicity and instability of these reagents are problematic in their applications. Acetyl cyanide and cyanoformates were used as cyanide sources in the enantioselective cyanation of aldehydes catalyzed by a chiral Ti complex and Lewis base (Scheme 5.31)." The Lewis base was necessary for the good yields and selectivities of these reactions. The desired products were obtained in the presence of 10mol% triethyl amine and 5mol% chiral titanium catalyst (Figure 5.14). Various aliphatic and aromatic aldehydes could be used in these reactions. [Pg.146]

Heterogenization of homogeneous metal complex catalysts represents one way to improve the total turnover number for expensive or toxic catalysts. Two case studies in catalyst immobilization are presented here. Immobilization of Pd(II) SCS and PCP pincer complexes for use in Heck coupling reactions does not lead to stable, recyclable catalysts, as all catalysis is shown to be associated with leached palladium species. In contrast, when immobilizing Co(II) salen complexes for kinetic resolutions of epoxides, immobilization can lead to enhanced catalytic properties, including improved reaction rates while still obtaining excellent enantioselectivity and catalyst recyclability. [Pg.3]

The racemic compound bupivacaine, which was first synthesized by Ekenstam et al. in 1957, is an amide-type LA with a high lipophilicity, protein binding and pKa giving rise to an intermediate onset and a long duration of action. At the same time, bupivacaine has a high toxicity potential relatively often associated with convulsions and life-threatening cardivascular collapse (Moore et al., 1978). Levobupivacaine, the (S)-enantiomer of bupivacaine, has recently been developed for clinical use addressing the enantioselectivity of side-effects of bupivacaine (see below). [Pg.307]

Further efforts to design chiral ligands led to the highly enantioselective oxidation of rranj-/3-methylstyrene (99% ee), mms-stilbene (97% ee), styrene (90%) rrans-3-heptene (90% ee), and dimethyl fumarate (93% ee) (87b-f). Although this reaction is a reliable synthetic method, the metal s cost and toxicity necessitate its use as a catalyst. In 1988, Sharpless found that the desired enantioselective reaction can be achieved... [Pg.279]

Initial preparative work with oxynitrilases in neutral aqueous solution [517, 518] was hampered by the fact that under these reaction conditions the enzymatic addition has to compete with a spontaneous chemical reaction which limits enantioselectivity. Major improvements in optical purity of cyanohydrins were achieved by conducting the addition under acidic conditions to suppress the uncatalyzed side reaction [519], or by switching to a water immiscible organic solvent as the reaction medium [520], preferably diisopropyl ether. For the latter case, the enzymes are readily immobilized by physical adsorption onto cellulose. A continuous process has been developed for chiral cyanohydrin synthesis using an enzyme membrane reactor [61]. Acetone cyanhydrin can replace the highly toxic hydrocyanic acid as the cyanide source [521], Inexpensive defatted almond meal has been found to be a convenient substitute for the purified (R)-oxynitrilase without sacrificing enantioselectivity [522-524], Similarly, lyophilized and powered Sorghum bicolor shoots have been successfully tested as an alternative source for the purified (S)-oxynitrilase [525],... [Pg.172]

The alio series of the pumiliotoxin A class have an additional hydroxyl group that has been placed at C-7 on the indolizidine ring, without assignment of configuration. Three members of the alio series have been assigned the tentative structures (7), (8), and (9).3 Pumiliotoxins A and B are relatively toxic, and comparable in potency to strychnine. Pumiliotoxin B has a potent cardiotonic and myotonic activity.3 An enantioselective total synthesis of pumiliotoxin A alkaloids from L-proline has already been announced.4... [Pg.60]

Another strategy to obtain optically active hydroperoxides is the enantioselective acetylation of peroxides by lipases.32 The examples are shown in Figure 31. By using this methods, (S)-methyl 13-hydroperoxy-9Z, llE-octadecadienoate, an important substance for medical studies concerning toxicity and other physiological actions, was synthesized successfully (Figure 31 (b)).32b... [Pg.260]


See other pages where Enantioselective toxicity is mentioned: [Pg.113]    [Pg.5]    [Pg.113]    [Pg.5]    [Pg.622]    [Pg.391]    [Pg.110]    [Pg.10]    [Pg.94]    [Pg.981]    [Pg.1218]    [Pg.1377]    [Pg.385]    [Pg.499]    [Pg.1681]    [Pg.507]    [Pg.68]    [Pg.68]    [Pg.69]    [Pg.507]    [Pg.485]    [Pg.366]    [Pg.10]    [Pg.200]    [Pg.141]    [Pg.485]    [Pg.196]    [Pg.178]    [Pg.186]    [Pg.212]    [Pg.622]    [Pg.22]    [Pg.8]    [Pg.2]    [Pg.403]    [Pg.285]    [Pg.21]    [Pg.70]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



© 2024 chempedia.info