Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toxic functional groups

JL HE POLYMERIZATION OF VINYL MONOMERS in the void spaces of bulk wood results in wood—polymer composites of increased strength properties and dimensional stability see Chapter 6). Because the different environmental conditions expose in-service timber to attack by numerous wood-deteriorating microorganisms, it is desirable to enhance the biodegradation resistance of wood, with simultaneous improvements in mechanical behavior. This chapter summarizes the formation of bioactive wood-polymer composites (1-4). The basic approach is still in situ polymerization of vinyl monomers in wood, with the appropriate choice of a bioactive, toxic, functional group incorporated in the monomer, and with other modifications based on wood-polymer reactions. [Pg.291]

The simplest filtering technique is to use substructure searching to remove compounds that contain reactive functional groups that are likely to interfere with the biological assay and compounds that contain toxic functional groups [67]. [Pg.625]

The above-mentioned filters are useful tools for compound selection. Flowever, visual inspection of hit list compounds is still necessary since compounds with reactive or toxic functional groups or difficult to synthesize or chemically optimized molecules should be avoided. Thus, the experience of a medicinal chemist will always be needed for identifying the most promising hits of a virtual screen. [Pg.132]

Classes of raw materials and reactions can help to eliminate exposure to toxic functional groups such as isocyanate (whose functional group is R-N=C=0), thereby... [Pg.91]

A collection of databases of chemicals and of functional groups which rank chemicals and groups relative to their reactivity, stability, toxicity, and flammability categories. This would assist in the evaluation of the potential benefits of substituting one, somewhat safer, chemical for another. [Pg.129]

Advantages of the Stille reaction include neutral conditions under which the reaction takes place, often with full retention of stereochemistry, and compatibility with nearly all functional groups thus eliminating additional steps required for protection and deprotection. Conversely, a highly undesirable drawback is the use of toxic tin compounds and the ensuing difficult removal of these from the reaction mixture. [Pg.14]

The unsaturated substituent in the carbene complex 1 often is aromatic or heteroaromatic, but can also be olefinic. The reaction conditions of the Dotz procedure are mild various functional groups are tolerated. Yields are often high. The use of chromium hexacarbonyl is disadvantageous, since this compound is considered to be carcinogenic however to date it cannot be replaced by a less toxic compound. Of particular interest is the benzo-anellation procedure for the synthesis of anthra-cyclinones, which are potentially cytostatic agents. ... [Pg.100]

Modem cross coupling chemistry is heavily dominated by the use of palladium and nickel complexes as the catalysts, which show an impressively wide scope and an excellent compatibility with many functional groups.2 This favorable application profile usually overcompensates the disadvantages resulting from the high price of the palladium precursors, the concerns about the toxicity of nickel salts, the need for ancillary ligands to render the complexes sufficiently active and stable, and the extended reaction times that are necessary in certain cases. [Pg.18]

Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ... Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ...
Herner HA, JE Trosko, SJ Masten (2001) The epigenic toxicity of pyrene and related ozonation byproducts containing an aldehyde functional group. Environ Sci Technol 35 3576-3583. [Pg.42]

The Stille reaction has developed as a popular protocol for the formation of C-C bonds due to the air- and moisture-stability as well as functional group compatibility of organotin compounds. Together with the Suzuki-Miyaura coupling it is one of the most powerful methods for the synthesis of molecules containing unsymmetrical biaryl moieties. However, despite its efficiency, this versatile reaction has slowly been displaced by other procedures that avoid the use of highly toxic organostannanes. [Pg.177]

Chemical characteristics and environmental conditions will influence the design of fleld studies to assess distributions of occurrence and exposure." Important chemical characteristics of the test substance include water solubility. Aloe, vapor pressure, degradation rate and potentially labile functional groups. These characteristics also need to be known for toxicologically important fiansformation products. One shortcoming in many fleld studies is a failure to address adequately exposure to toxic transformation products. [Pg.941]

Ionization. Many organic chemicals contain functional groups that dissociate to yield charged species. The toxicity and chemical reactivity of the uncharged (neutral) molecule and its charged ions can be very different. Differences in reactivity of ionic species can be accommodated in fate models when rate constants are expressed in terms of the individual species. [Pg.26]

The presence of chemically reactive structural features in potential drug candidates, especially when caused by metabolism, has been linked to idiosyncratic toxicity [56,57] although in most cases this is hard to prove unambiguously, and there is no evidence that idiosyncratic toxicity is correlated with specific physical properties per se. The best strategy for the medicinal chemist is avoidance of the liabilities associated with inherently chemically reactive or metabolically activated functional groups [58]. For reactive metabolites, protein covalent-binding screens [59] and genetic toxicity tests (Ames) of putative metabolites, for example, embedded anilines, can be employed in risky chemical series. [Pg.401]

The use of fluorine to modulate properties including potency, selectivity, pharmacokinetics, and toxicity has have been highlighted. Fluorine has also been suggested as a potential bioisosteric replacement for a number of functional groups, examples of which are presented in the final section. [Pg.444]

The protection-deprotection reaction sequences constitute an integral part of organic syntheses such as the preparation of monomers, fine chemicals, and reaction intermediates or precursors for pharmaceuticals. These reactions often involve the use of acidic, basic or hazardous reagents and toxic metal salts [30], The solvent-free MW-accelerated protection/deprotection of functional groups, developed during the last decade, provides an attractive alternative to the conventional cleavage reactions. [Pg.183]

Bacterial cell walls contain different types of negatively charged (proton-active) functional groups, such as carboxyl, hydroxyl and phosphoryl that can adsorb metal cations, and retain them by mineral nucleation. Reversed titration studies on live, inactive Shewanella putrefaciens indicate that the pH-buffering properties of these bacteria arise from the equilibrium ionization of three discrete populations of carboxyl (pKa = 5.16 0.04), phosphoryl (oKa = 7.22 0.15), and amine (/ Ka = 10.04 0.67) groups (Haas et al. 2001). These functional groups control the sorption and binding of toxic metals on bacterial cell surfaces. [Pg.74]


See other pages where Toxic functional groups is mentioned: [Pg.118]    [Pg.12]    [Pg.33]    [Pg.82]    [Pg.96]    [Pg.118]    [Pg.12]    [Pg.33]    [Pg.82]    [Pg.96]    [Pg.384]    [Pg.273]    [Pg.259]    [Pg.342]    [Pg.254]    [Pg.196]    [Pg.197]    [Pg.201]    [Pg.396]    [Pg.8]    [Pg.143]    [Pg.51]    [Pg.67]    [Pg.118]    [Pg.310]    [Pg.57]    [Pg.451]    [Pg.167]    [Pg.171]    [Pg.74]    [Pg.419]    [Pg.331]    [Pg.371]    [Pg.213]    [Pg.197]    [Pg.71]    [Pg.544]    [Pg.389]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



© 2024 chempedia.info