Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toluene-2,4-diisocyanate reaction

Polychrome Corp. Castor Oil - hydroxyethyl acrylate -toluene diisocyanate reaction product and trimethylol propane triacrylate cured using DEAP and UV. 180 peel (1.5 mil polyester substrate) of 25-30 oz. Shear 8 hr. (500g.)... [Pg.347]

For methylene diphenyl diisocyanate (MDI), the initial reaction involves the condensation of aniline [62-53-3] (21) with formaldehyde [50-00-0] to yield a mixture of oligomeric amines (22, where n = 1, 2, 3...). For toluene diisocyanate, amine monomers are prepared by the nitration (qv) of toluene [108-88-3] and subsequent hydrogenation (see Amines byreduction). These materials are converted to the isocyanate, in the majority of the commercial aromatic isocyanate phosgenation processes, using a two-step approach. [Pg.452]

A convenient method for the synthesis of these low boiling materials consists of the reaction of /V,/V-dimethy1iirea [96-31-1] with toluene diisocyanate to yield an aUphatic—aromatic urea (84). Alternatively, an appropriate aUphatic—aromatic urea can be prepared by the reaction of diphenylcarbamoyl chloride [83-01-2] with methylamine. Thermolysis of either of the mixed ureas produces methyl isocyanate ia high yield (3,85). [Pg.455]

Phosgenation. The most important reaction of y -toluenediamine is with phosgene [75-44-5] to give toluene diisocyanate TDI (see... [Pg.237]

Yield for the process at low catalyst loading is 95%. AJ-Methyl-toluenediamiae, one of the reaction by-products, represents not only a reduction ia yield, but also a highly objectionable impurity ia the manufacture of toluene diisocyanate. Low concentrations of CO (0.3—6% volume) control this side reaction. [Pg.238]

Toluene Diisocyanate. Toluene diisocyanate is the basic raw material for production of flexible polyurethane foams. It is produced by the reaction sequence shown below, in which toluene is dinitrated, the dinitrotoluene is hydrogenated to yield 2,4-diaminotoluene, and this diamine in turn is treated with phosgene to yield toluene 2,4-diisocyanate. [Pg.190]

An equimolar mixture of carbon monoxide and chlorine reacts at 500 K under a slight positive pressure. The reaction is extremely exothermic (Ai/gQQp. = —109.7 kJ or —26.22 kcal), and heat removal is the limiting factor in reactor design. Phosgene (qv) is often produced on-site for use in the manufacture of toluene diisocyanate (see Amines, aromatic-diaminotoluenes Isocyanates, organic). [Pg.51]

Toluene diisocyanate Midget impinger 15 ml Marcali solution 1 25 95 Diazotlzation and coupling reaction Materials containing reactive hydrogen attached to oxygen (phenol) certain other diamines... [Pg.184]

No by-product is formed from this reaction. Toluene diisocyanate (Chapter 10) is a widely used monomer. Diols and triols produced from the reaction of glycerol and ethylene oxide or propylene oxide are suitable for producing polyurethanes. [Pg.342]

PUR are a broad class of highly cross-linked plastics prepared by multiple additions of poly-functional hydroxyl or amino compounds. Typical reactants are polyisocyanates [toluene diisocyanate (TDI)] and polyhydroxyl molecules such as polyols, glycols, polyesters, and polyethers. The cyanate group can also combine with water this reaction is the basis for hardening of the one-part foam formulations. [Pg.499]

Another class of hydrocarbon binders used in propints are the carboxy-terminated polybutadiene polymers which are cross-linked with either tris[l-(2-methyl)aziridinyl] phosphine oxide (MAPO) or combinations with phenyl bis [l -(2-methyl)aziridinyl] phosphine oxide (Phenyl MAPO). Phenyl MAPO is a difunctional counterpart of MAPO which makes possible chain extension of polymers with two carboxylic acid groups. A typical propint formulation with ballistic properties is in Table 11 (Ref 83) Another class of composites includes those using hydroxy-terminated polybutadienes cross-linked with toluene diisocyanate as binders. The following simplified equations illustrate typical reactions involved in binder formation... [Pg.889]

Chemoenzymatic synthesis of alkyds (oil-based polyester resins) was demonstrated. PPL-catalyzed transesterification of triglycerides with an excess of 1,4-cyclohexanedimethanol mainly produced 2-monoglycerides, followed by thermal polymerization with phthalic anhydride to give the alkyd resins with molecular weight of several thousands. The reaction of the enzymatically obtained alcoholysis product with toluene diisocyanate produced the alkyd-urethane. [Pg.226]

Tuz Golu (lake), 5 784 Tversky similarity, 6 8 T vessicant agent, 5 816 physical properties, 5 817t Twaron fiber, 13 373 Tween surfactants, 24 150 12-membered ring macrolides, 15 272, 275t 2,6-TDI, reaction with a polyether triol, 25 459. See also Toluene diisocyanate (TDI)... [Pg.978]

The laser flash photolysis of aromatic diisocyanate based polyurethanes in solution provides evidence for a dual mechanism for photodegradation. One of the processes, an N-C bond cleavage, is common to both TDI (toluene diisocyanate) and MDI (methylene 4,4 -diphenyldiisocyanate) based polyurethanes. The second process, exclusive to MDI based polyurethanes, involves formation of a substituted diphenylmethyl radical. The diphenylmethyl radical, which readily reacts with oxygen, is generated either by direct excitation (248 nm) or indirectly by reaction with a tert-butoxy radical produced upon excitation of tert-butyl peroxide at 351 nm. [Pg.43]

Isocyanates are capable of co-reacting to form dimers, oligomers and polymers. For example, aromatic isocyanates will readily dimerize when heated, although the presence of a substituent ortho to the -NCO group reduces this tendency. For example, toluene diisocyanate (TDI) is less susceptible to dimer formation than diphenylmethane diisocyanate (MDI). The dimerization reaction is reversible, with dissociation being complete above 200 °C. It is unusual for aliphatic isocyanates to form dimers, but they will readily form trimers, as do aromatic isocyanates. The polymerization of aromatic isocyanates is known, but requires the use of metallic sodium in DMF. [Pg.86]

O Brien IM, Harries MG, Burge PS, Pepys J Toluene diisocyanate-induced asthma I. Reactions to TDI, MDI, HDI, and histamine. Clin Allergy 9 -6, 1979... [Pg.379]

Two other derivatives of toluene are the important explosive trinitrotoluene (TNT) and the polyurethane monomer toluene diisocyanate (TDI). TNT requires complete nitration of toluene. TDI is derived from a mixture of dinitrotoluenes (usually 80% o,p and 20% o,o) by reduction to the diamine and reaction with phosgene to the diisocyanate. TDI is made into flexible foam polyurethanes for cushioning in furniture (35%), transportation (25%), carpet underlay (20%), and bedding (10%). A small amount is used in polyurethane coatings, rigid foams, and elastomers. [Pg.198]

Toluene diisocyanate (TDI) is made from the reaction of 2,4-toluenediamine and phosgene. The diamine is made by reduction of dinitrotoluene, which in turn is manufactured by nitration of toluene. See Chapter 11, Section 7. [Pg.234]

Most useful polyurethanes are cross-linked. Those commonly used in foams start with a diisocyanate like toluene diisocyanate (TDI) and a low molecular weight polyether such as poly(propylene glycol). Recall that the basic reaction of an isocyanate plus an alcohol gives the urethane functionality. [Pg.273]

The two key isocyanates that are used in the greatest volumes for polyurethane polymers are toluene diisocyanate (TDl) and methylene diphenyl diisocyanate (MDl). Both isocyanates are produced first by nitration of aromatics (toluene and benzene, respectively), followed by hydrogenation of the nitro aromatics to provide aromatic amines. In the case of MDl, the aniline intermediate is then condensed with formaldehyde to produce methylene dianiline (MDA), which is a mixture of monomeric MDA and an oligomeric form that is typical of aniline/formaldehyde condensation products [2]. The subsequent reaction of phosgene with the aromatic amines provides the isocyanate products. Isocyanates can also be prepared by the reaction of aromatic amines with dimethylcarbonate [3, 4]. This technology has been tested at the industrial pilot scale, but is not believed to be practiced commercially at this time. [Pg.317]

We will return to these reactions later in connection with polyurethanes because one monomer in polyurethanes is toluene diisocyanate, and the first step in its synthesis is the production of dinitrotoluene. [Pg.125]

Phosgene is a key intermediate used in synthesis of many chemicals, a major one being toluene diisocyanate, a monomer in polyurethanes. Phosgene is made from chlorine and carbon monoxide through the overall reaction... [Pg.188]


See other pages where Toluene-2,4-diisocyanate reaction is mentioned: [Pg.487]    [Pg.487]    [Pg.89]    [Pg.233]    [Pg.417]    [Pg.457]    [Pg.459]    [Pg.145]    [Pg.361]    [Pg.42]    [Pg.537]    [Pg.73]    [Pg.228]    [Pg.156]    [Pg.741]    [Pg.184]    [Pg.554]    [Pg.571]    [Pg.569]    [Pg.56]    [Pg.43]    [Pg.119]    [Pg.301]    [Pg.363]    [Pg.84]    [Pg.471]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



2, 6-Toluene diisocyanate, reaction with

Butanol reaction with 2.6-toluene diisocyanate

Diisocyan

Toluene diisocyanate

Toluene diisocyanates

Toluene reactions

© 2024 chempedia.info