Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

TOF analyzer

A liquid chromatograph (LC) is combined with a TOF instrument through a Z-SPRAY ion source. Two hexapoles are used to focus the ion beam before it is examined by a TOF analyzer, as described in Figure 20.3. [Pg.154]

An AutoSpec-TOF mass spectrometer has a magnetic sector and an electron multiplier ion detector for carrying out one type of mass spectrometry plus a TOF analyzer with a microchannel plate multipoint ion collector for another type of mass spectrometry. Either analyzer can be used separately, or the two can be run in tandem (Figure 20.4). [Pg.154]

A TOF analyzer can be used alone or in conjunction with other analyzers to function as a hybrid mass spectrometer. The hybrids provide advantages not attainable, or difficult to attain by the... [Pg.154]

A further important property of the two instruments concerns the nature of any ion sources used with them. Magnetic-sector instruments work best with a continuous ion beam produced with an electron ionization or chemical ionization source. Sources that produce pulses of ions, such as with laser desorption or radioactive (Californium) sources, are not compatible with the need for a continuous beam. However, these pulsed sources are ideal for the TOF analyzer because, in such a system, ions of all m/z values must begin their flight to the ion detector at the same instant in... [Pg.157]

The hexapole cannot act as a mass filter by applying a DC field and is used only in its all-RF mode, in which it allows all ions in a beam to pass through, whatever their m/z values. In doing so, the ion beam is constrained, so it leaves the hexapole as a narrow beam. This constraint is important because the ion beam from the inlet system tends to spread due to mutual ion repulsion and collision with residual air and solvent molecules. By injecting this divergent beam into a hexapole unit, it can be refocused. At the same time, vacuum pumps reduce the background pressure to about 10 mbar (Figure 22.1). The pressure needed in the TOF analyzer is about 10 ... [Pg.164]

The term Q/TOF is used to describe a type of hybrid mass spectrometer system in which a quadrupole analyzer (Q) is used in conjunction with a time-of-flight analyzer (TOP). The use of two analyzers together (hybridized) provides distinct advantages that cannot be achieved by either analyzer individually. In the Q/TOF, the quadrupole is used in one of two modes to select the ions to be examined, and the TOF analyzer measures the actual mass spectrum. Hexapole assemblies are also used to help collimate the ion beams. The hybrid orthogonal Q/TOF instrument is illustrated in Figure 23.1. [Pg.169]

Schematic diagram of an orthogonal Q/TOF instrument. In this example, an ion beam is produced by electrospray ionization. The solution can be an effluent from a liquid chromatography column or simply a solution of an analyte. The sampling cone and the skimmer help to separate analyte ions from solvent, The RF hexapoles cannot separate ions according to m/z values and are instead used to help confine the ions into a narrow beam. The quadrupole can be made to operate in two modes. In one (wide band-pass mode), all of the ion beam passes through. In the other (narrow band-pass mode), only ions selected according to m/z value are allowed through. In narrow band-pass mode, the gas pressure in the middle hexapole is increased so that ions selected in the quadrupole are caused to fragment following collisions with gas molecules. In both modes, the TOF analyzer is used to produce the final mass spectrum. Schematic diagram of an orthogonal Q/TOF instrument. In this example, an ion beam is produced by electrospray ionization. The solution can be an effluent from a liquid chromatography column or simply a solution of an analyte. The sampling cone and the skimmer help to separate analyte ions from solvent, The RF hexapoles cannot separate ions according to m/z values and are instead used to help confine the ions into a narrow beam. The quadrupole can be made to operate in two modes. In one (wide band-pass mode), all of the ion beam passes through. In the other (narrow band-pass mode), only ions selected according to m/z value are allowed through. In narrow band-pass mode, the gas pressure in the middle hexapole is increased so that ions selected in the quadrupole are caused to fragment following collisions with gas molecules. In both modes, the TOF analyzer is used to produce the final mass spectrum.
For the sake of illustration, a TOF analyzer could be likened to a camera taking snapshots of the m/z values of an assembly (beam) of ions the faster the repetition rate at which the camera shutter is clicked, the greater is the number of mass spectra that can be taken in a very short time. For TOF analyzers, it is not uncommon to measure several thousand mass spectra in one second All such spectra can be added to each other digitally, a process that improves the signal-to-noise ratio in the final accumulated total. [Pg.171]

A single instrument — a hybrid of a quadrupole and a TOF analyzer — can measure a full mass spectrum of ions produced in an ion source. If these are molecular ions, their relative molecular mass is obtained. Alternatively, precursor ions can be selected for MS/MS to give a fragment-ion spectrum characteristic of the precursor ions chosen, which gives structural information about the original molecule. [Pg.173]

Ions in a TOF analyzer are temporally separated according to mass. Thus, at the detector all ions of any one mass arrive at one particular time, and all ions of other masses arrive at a different times. Apart from measuring times of arrival, the TDC device must be able to measure the numbers of ions at any one m/z value to obtain ion abundances. Generally, in TOF instruments, many pulses of ions are sent to the detector per second. It is not unusual to record 30,000 spectra per minute. Of course, each spectmm contains few ions, and a final mass spectrum requires addition of all 30,000 spectra to obtain a representative result. [Pg.220]

Hybrid time-of-flight (TOF) mass spectrometers make use of a TOF analyzer placed at right angles to a main ion beam. Ions are deflected from this beam by a pulsed electric fleld at right angles to the ion beam direction. The deflected ions travel down the TOF tube for analysis. Hybrid TOF mass spectrometers have many advantages arising from the combination of two techniques, neither of which alone would be as useful. [Pg.401]

Upon emerging from the quadrupole, the ions are accelerated through about 40 V and focused into the time-of-flight (TOF) analyzer. A pusher electrode is sited alongside this focused ion beam. Application of a pulse of high electric potential (about 1 kV) to the pusher electrode over a period of about 3 ps causes a short section of the ion beam to be detached and accelerated into the TOF analyzer. A positive potential is used to accelerate positively charged ions and vice versa. [Pg.404]

The TOF analyzer is placed at right angles (orthogonal) to the main ion beam, and therefore the pusher electrode accelerates a short section of this beam at right angles to its original direction. [Pg.404]

The detached section of ions sets off along the TOF analyzer, the ions having velocities proportional to the square roots of their m/z values. Thus ions of smaller m/z value arrive first and those of larger value arrive last. [Pg.404]

The TOF analyzer provides the full mass spectrum of all the ions in the main ion beam at the time the pulse of electric potential was applied, m/z values being derived from the flight times of the ions along their trajectory in the TOF analyzer. [Pg.404]

After the pulsed electric field has been applied, a pulse of ions travels along a TOF analyzer placed at a right angle to the original ion beam. When the pulse is off, the ions have only their original velocities and continue into a different ion collector. [Pg.407]

The pulsed ions start their journeys down the TOF flight tube all at the same time they separate in the TOF analyzer according to their velocities and arrive at the TOF ion collector at different times (temporally separated). [Pg.407]

Pulses of ions can be directed into the TOF analyzer at the rate of about 30 kHz, and, therefore, more than 30,000 spectra per second can be collected and summed. There are significant improvements in signal-to-noise ratios and speed of acquisition of data. [Pg.407]

In TOF-SIMS, the source of primary ions is pulsed at a rate of a few kHz. The pulse width is on the order of 1 ns. Secondary ions ejected from the sample surface are accelerated through a potential V and then drift through a field-free TOF analyzer with different velocities, depending on their masses. The drift velocity of an ion with charge-to-mass ratio zjm can be determined from the expression ... [Pg.296]

For a simple linear TOF analyzer of length d, the arrival time at the detector is... [Pg.296]


See other pages where TOF analyzer is mentioned: [Pg.153]    [Pg.154]    [Pg.154]    [Pg.155]    [Pg.155]    [Pg.156]    [Pg.156]    [Pg.158]    [Pg.158]    [Pg.159]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.165]    [Pg.167]    [Pg.172]    [Pg.172]    [Pg.198]    [Pg.216]    [Pg.224]    [Pg.282]    [Pg.290]    [Pg.401]    [Pg.403]    [Pg.404]    [Pg.404]    [Pg.408]    [Pg.552]    [Pg.373]    [Pg.183]   
See also in sourсe #XX -- [ Pg.305 , Pg.306 ]

See also in sourсe #XX -- [ Pg.379 ]




SEARCH



Ion Detectors and Data Processing in MALDI-TOF Analyzers

Orthogonal Acceleration TOF Analyzers

Orthogonal TOF mass analyzers

TOF mass analyzer

Time-of-Flight (TOF) Analyzer

© 2024 chempedia.info