Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium aldol type reactions

Recent developments of aldol-type reactions with titanium enolates include the a- and /3-C-glycosidation of glycals73 and the diastereoselective addition to 2-acetoxytetrahydrofurans.74 Mukaiyama and co-workers have developed a one-pot procedure for the preparation of unsymmetrical double aldols.75... [Pg.418]

Aldol-type reaction of zinc esters. This titanium reagent promotes condensation of (ethoxycarbonylalkyl)iodozinc compounds (13, 220) with aldehydes or ketones to provide hydroxy esters and/or lactones. The active reagent may be (ethoxycarbonyl)alkyltriisopropoxytitanium. [Pg.87]

Chromium carbene complexes, 82 Methyl acrylate, 183 (2R,4R)-Pentanediol, 237 Titanium(IV) chloride, 304 Nitroaldols Nitromethane, 199 Intramolecular reactions Methyl acrylate, 183 Other aldol-type reactions Bis(2-pyridinethiolato)tin(II), 40 Alkoxycarbonylation (see Carboalkoxy-lation)... [Pg.356]

In contrast to titanium enolates of ketones, titanium enolates of aldehydes exhibit practically no stereoselectivity in aldol reactions. However, titanation of dimethylhy-drazones of aldehydes with 1 results in substrates (2) that show high eryt/iro-selecti v i ty in aldol-type reactions with aldehydes (equation I). Bromotitanium tris(diethylamide) can be used in place of 1, but is less efficient, as is Ti(IV) isopropoxide.6... [Pg.193]

Trimethylsilyloxy)furan can also be used as a functionalized silyl enol ether for the asymmetric catalytic aldol-type reaction. Figadere has reported that the reaction of aliphatic aldehydes with the siloxyfuran catalyzed by BINOL-derived titanium complex provides the diastereomeric mixtures with high enantioselectivity (Sch. 42) [107], The addition reaction proceeds at the y position of the siloxyfuran to give butenolides of biological and synthetic importance. [Pg.824]

The titanium(IV) chloride-promoted reactions of enol silyl ethers with aldehydes, ketones, and acetals, known as Mukaiyama reaction, are useful as aldol type reactions which proceed under acidic conditions (eq (23)) [20], Enol silyl ethers also undergo the Michael type reactions with enones or p.y-unsaturated acetals (eq (24)) [21]. Under similar reaction conditions, enol silyl ethers are alkylated with reactive alkyl halides such as tertiary halides or chloromethyl sulfides (eq (25)) [22], and acylated with acid halides to give 1,3-diketones (eq (26)) [23]. [Pg.397]

Keywords Ene reaction, Hetero-Diels-Alder reaction, Ene cyclization, Desymmetrization, Kinetic resolution. Non-linear effect. Asymmetric activation, Metallo-ene, Carbonyl addition reaction, Aldol-type reaction. Titanium, Aluminum, Magnesium, Palladium, Copper, Lanthanides, Binaphthol, Bisoxazoline, Diphosphine, TADDOL, Schiff base. [Pg.1077]

The Mukaiyama reaction is an aldol-type reaction between a silyl enol ether and an aldehyde in the presence of a stoichiometric amount of titanium chloride. The reaction, which displays a negative volume of activation, could be performed without acidic promoter under high pressure [58]. In this case, the major product is the syn hydroxy ketone, not as for the TiCl4-promoted reactions which lead mostly to the anti addition product. Since the syn or anti selectivity is the result of two transition states with different activation volumes (AV n < AVfnti), it was of great interest to investigate the aldol reaction in water. Indeed, the reaction of the silyl enol ether of cyclohexanone with benzaldehyde in aqueous medium was shown to proceed without any catalyst and under atmospheric pressure, with the same syn... [Pg.34]

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

Carreira et al. used a chiral BlNOL-derived Schiff base-titanium complex as the catalyst for the aldol reactions of acetate-derived ketene silyl acetals (Scheme 8C.29) [64a]. The catalyst was prepared in toluene in the presence of salicylic acid, which was reported to be crucial to attain a high enantioselectivity. A similar Schiff base-titanium complex is also applicable to the carbonyl-ene type reaction with 2-methoxypropene [64b], Although the reaction, when con-... [Pg.564]

Mukaiyama Aldol Condensation. The BINOL-derived titanium complex BINOL-T1CI2 is an efficient catalyst for the Mukaiyama-type aldol reaction. Not only ketone silyl enol ether (eq 25), but also ketene silyl acetals (eq 26) can be used to give the aldol-type products with control of absolute and relative stereochemistry. [Pg.89]

Besides alkoxides, acetylacetonates are also used as the starting materials for the synthesis of oxides. Titania (anatase) is obtained by decomposition of titanium oxyacetylacetonate (TiO(acac)2) in toluene at 300°C. Similarly solvothermal treatment of Fe(lll) acetylacetonate in toluene yields microcrystalline magnetite. One of the drawbacks of the use of acetylacetonate may be formation of various high boiling point organic by-products via aldol-type condensation of the acetylacetone. Actually more than 50 compounds are detected by gas chromatography-mass spectrometry (GC-MS) analysis of the supernatant of the reaction, some of which are phenolic compounds and are hardly removed from the oxide particles by washing with acetone. ... [Pg.308]

Six-membered chiral acetals, derived from aliphatic aldehydes, undergo aldol-type coupling reactions with a-silyl ketones, silyl enol ethers," and with silyl ketene acetals " in the presence of titanium tetrachloride with high diastereoselectivities (equation 41) significant results are reported in Table 20. This procedure, in combination with oxidative destructive elimination of the chiral auxiliary, has been applied... [Pg.650]

The influence of Lewis acids on the diastereoselectivity of the cycloaddition of /f-alkoxyalde-hydes has also been studied35. Magnesium bromide, highly effective for a-alkoxyaldehydes, fails in the case of the cycloaddition of aldehyde 10 to diene 2 and the reaction does not exhibit any selectivity, probably due to a change of mechanism to Mukaiyama s aldol type. One reason may be the change of solvent from tetrahydrofuran to a mixture of benzene and diethyl ether. The additions of aldehyde 10 to other dienes are more selective but diastereoselectivity is still much lower than for the a-alkoxy aldehydes. Boron trifluoride-diethyl etherate complex also leads to a mixture of four possible products. Excellent selectivity is achieved for the titanium(IV) chloride catalyzed addition of aldehyde 10a to diene 2b, 11c is obtained as the only product. [Pg.725]

Silyl dienol ethers also participate in the asymmetric aldol-type transformation. For example, silyl 1,3-dienol ethers react with aldehydes exclusively at the diene terminus in an enantioselective manner in the presence of a chiral titanium (Scheme 3-81) or copper catalyst, whereas the asymmetric reaction of... [Pg.432]

Stereoselectivities of 99% are also obtained by Mukaiyama type aldol reactions (cf. p. 58) of the titanium enolate of Masamune s chired a-silyloxy ketone with aldehydes. An excess of titanium reagent (s 2 mol) must be used to prevent interference by the lithium salt formed, when the titanium enolate is generated via the lithium enolate (C. Siegel, 1989). The mechanism and the stereochemistry are the same as with the boron enolate. [Pg.62]

A titanium(iv) chloride mediated Baylis-Hillman-type or aldol reaction between a-ketoesters and cyclohex-2-enones has been studied (Equation (13)).77 The steric effect of the R2 substituent is crucial for the reaction pathway since the aldol reaction only proceeds with the unsubstituted cyclohexenone (aldol adduct 71 with R2 = H to a small extent the Baylis-Hillman reaction occurs), whereas with the substituted substrate (R2 = Me) gives exclusively the Baylis-Hillman adduct 72. [Pg.418]

The Diels-Alder reaction outlined above is a typical example of the utilization of axially chiral allenes, accessible through 1,6-addition or other methods, to generate selectively new stereogenic centers. This transfer of chirality is also possible via in-termolecular Diels-Alder reactions of vinylallenes [57], aldol reactions of allenyl eno-lates [19f] and Ireland-Claisen rearrangements of silyl allenylketene acetals [58]. Furthermore, it has been utilized recently in the diastereoselective oxidation of titanium allenyl enolates (formed by deprotonation of /3-allenecarboxylates of type 65 and transmetalation with titanocene dichloride) with dimethyl dioxirane (DMDO) [25, 59] and in subsequent acid- or gold-catalyzed cycloisomerization reactions of a-hydroxyallenes into 2,5-dihydrofurans (cf. Chapter 15) [25, 59, 60],... [Pg.67]


See other pages where Titanium aldol type reactions is mentioned: [Pg.53]    [Pg.53]    [Pg.801]    [Pg.153]    [Pg.801]    [Pg.160]    [Pg.9]    [Pg.322]    [Pg.664]    [Pg.222]    [Pg.256]    [Pg.51]    [Pg.248]    [Pg.264]    [Pg.100]    [Pg.50]    [Pg.314]    [Pg.314]    [Pg.355]    [Pg.314]    [Pg.338]    [Pg.314]    [Pg.15]    [Pg.213]   
See also in sourсe #XX -- [ Pg.56 , Pg.58 ]




SEARCH



Titanium reactions

© 2024 chempedia.info