Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time-resolved fluorescence spectroscopy sensitivity

The fluorescence lifetime of a fluorophore is highly sensitive to its molecular environment. Many macromolecular events, such as rotational diffusion, resonance-energy transfer, and dynamic quenching, occur on the same timescale as the fluorescence decay. Thus, time-resolved fluorescence spectroscopy can be used to investigate these processes and gain insight into the chemical surroundings of the fluorophore. [Pg.91]

Time resolved fluorescence spectroscopy, i. e., lifetime measurement, has several advantages over the steady-state measurements described above. These include insensitivity to variables that may affect fluorescence measurements such as turbidity or scattering in the samples, photobleaching, changes in fiuo-rophore concentration, and optical misalignment. The presence of different lifetimes from samples with similar featureless spectra can provide unambiguous identification of the species. Lifetime measurements are also more sensitive to the fluorophore micro-environment. In spite of these advantages, there have been limited lifetime studies on DOM in seawater [50,51,58] and natural freshwater samples of DOM [58]. [Pg.7]

Steady-state and time-resolved fluorescence spectroscopy Absorption and fluorescence spectra were measured with a Hitachi 557 spectrophotometer and a Hitachi 850 spectrofluorometer, respectively. The time-resolved fluorescence spectra were measured with the apparatus reported previously [4,6] in principle, the time-correlated single photon counting system under a low excitation condition. The pulse intensity (540 nm, 6 ps (fwhm)) was in a range of 10 to 10 photons/cm. The time resolution of our optical set-up was 6 ps. Correction of spectral sensitivity and data treatment were carried out as reported previously [4,6]. [Pg.1267]

When deciding to study the dynamics of electronic excitation energy transfer in molecular systems by conventional spectroscopic techniques (in contrast to those based on non-linear properties such as photon echo spectroscopy) one has the choice between time-resolved fluorescence and transient absorption. This choice is not inconsequential because the two techniques do not necessarily monitor the same populations. Fluorescence is a very sensitive technique, in the sense that single photons can be detected. In contrast to transient absorption, it monitors solely excited state populations this is the reason for our choice. But, when dealing with DNA components whose quantum yield is as low as 10-4, [3,30] such experiments are far from trivial. [Pg.132]

Fluorescence-based detection methods are the most commonly used readouts for HTS as these readouts are sensitive, usually homogeneous and can be readily miniaturised, even down to the single molecule level.7,8 Fluorescent signals can be detected by methods such as fluorescence intensity (FI), fluorescence polarisation (FP) or anisotropy (FA), fluorescence resonance energy transfer (FRET), time-resolved fluorescence resonance energy transfer (TR-FRET) and fluorescence intensity life time (FLIM). Confocal single molecule techniques such as fluorescence correlation spectroscopy (FCS) and one- or two-dimensional fluorescence intensity distribution analysis (ID FID A, 2D FIDA) have been reported but are not commonly used. [Pg.249]

A qualitatively different approach to probing multiple pathways is to interrogate the reaction intermediates directly, while they are following different pathways on the PES, using femtosecond time-resolved pump-probe spectroscopy [19]. In this case, the pump laser initiates the reaction, while the probe laser measures absorption, excites fluorescence, induces ionization, or creates some other observable that selectively probes each reaction pathway. For example, the ion states produced upon photoionization of a neutral species depend on the Franck-Condon overlap between the nuclear configuration of the neutral and the various ion states available. Photoelectron spectroscopy is a sensitive probe of the structural differences between neutrals and cations. If the structure and energetics of the ion states are well determined and sufficiently diverse in... [Pg.223]

Time-resolved laser flash ESR spectroscopy generates radicals with nonequilibrium spin populations and causes spectra with unusual signal directions and intensities. The signals may show absorption, emission, or both and be enhanced as much as 100-fold. Deviations from Boltzmann intensities, first noted in 1963, are known as chemically induced dynamic electron polarization (CIDEP). Because the splitting pattern of the intermediate remains unaffected, the CIDEP enhancement facilitates the detection of short-lived radicals. A related technique, fluorescence detected magnetic resonance (FDMR) offers improved time resolution and its sensitivity exceeds that of ESR. The FDMR experiment probes short-lived radical ion pairs, which form reaction products in electronically excited states that decay radiatively. ... [Pg.213]

The time-resolved spectroscopy is a sensitive tool to study the solute-solvent interactions. The technique has been used to characterize the solvating environment in the solvent. By measuring the time-dependent changes of the fluorescence signals in solvents, the solvation, rotation, photoisomerization, or excimer formation processes of a probe molecule can be examined. In conventional molecular solutions, many solute-solvent complexes. [Pg.299]

Conventional analytical techniques generally operate at the part per million or higher levels. Some techniques such as laser photo acoustic spectroscopy are capable of measuring phenomena at the 10-8-10-6 mol/L level. The most sensitive conventional analytical techniques, time-resolved laser-induced fluorescence, and ICP-MS are capable of measuring concentrations at the part per trillion level, that is, 1 part in 1012, but rarely does one see detection sensitivities at the single atom level as routinely found in some radioanalytical techniques. While techniques such as ICP-MS are replacing the use of neutron activation analysis in the routine measurement of part per billion concentrations, there can be no doubt about the unique sensitivity associated with radioanalytical methods. [Pg.581]

Fluorescence microscopy techniques are now available which are capable of studying supramolecular interfacial assemblies with excellent spatial and temporal resolution as well as exceptional sensitivity. These methods were initially developed for use in cellular biology, but are finding increasing application in interfacial supramolecular chemistry. This trend is set to continue as methods in single-molecule spectroscopy and time-resolved microscopy evolve. [Pg.82]

It is well known that both nanometre and nanosecond-picosecond resolutions at an interface can be achieved by total internal reflection (TIR) fluorescence spectroscopy. Unlike steady-state fluorescence spectroscopy, fluorescence dynamics is highly sensitive to microscopic environments, so that time-resolved TIR fluorometry at water/oil interfaces is worth exploring to obtain a clearer picture of the interfacial phenomena [1]. One of the interesting targets to be studied is the characteristics of dynamic motions of a molecule adsorbed on a water/oil interface. Dynamic molecular motions at a liquid/liquid interface are considered to be influenced by subtle changes in the chemical/physical properties of the interface, particularly in a nanosecond-picosecond time regime. Therefore, time-resolved spectroscopy is expected to be useful to study the nature of a water/oil interface. [Pg.249]


See other pages where Time-resolved fluorescence spectroscopy sensitivity is mentioned: [Pg.438]    [Pg.99]    [Pg.1414]    [Pg.1715]    [Pg.205]    [Pg.112]    [Pg.300]    [Pg.165]    [Pg.598]    [Pg.296]    [Pg.29]    [Pg.372]    [Pg.341]    [Pg.447]    [Pg.41]    [Pg.164]    [Pg.341]    [Pg.654]    [Pg.20]    [Pg.269]    [Pg.69]    [Pg.153]    [Pg.276]    [Pg.279]    [Pg.233]    [Pg.160]    [Pg.450]    [Pg.289]    [Pg.264]    [Pg.596]    [Pg.917]    [Pg.138]    [Pg.458]    [Pg.522]    [Pg.146]    [Pg.116]    [Pg.140]    [Pg.6]    [Pg.204]   
See also in sourсe #XX -- [ Pg.361 ]




SEARCH



7-resolved spectroscopy

Fluorescence sensitivity

Fluorescence sensitization

Fluorescence spectroscopy

Fluorescence time-resolved spectroscopy

Fluorescent spectroscopy

Time Sensitivity

Time resolved spectroscopy

Time spectroscopy

Time-resolved fluorescence

Time-resolved spectroscopies spectroscopy

© 2024 chempedia.info