Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thymine-5-phosphate

In addition to the above reactions of amino acids, two others involving specific amino acids must be mentioned. The first reaction involves the conversion of methionine to 5-adenosyl methionine by methionine adenosyl transferase. In this form, methionine is an important methyl donor in animal tissue. The second reaction is that involving aspartate carbamoyl transferase which converts L-aspar-tate to Ai -carbamoyl-I aspartate. This is the begiiming of a series of reactions culminating in the synthesis of pyrimidines. An intermediate step which forms orotidine-S-phosphate is catalysed by orotidine-5-phosphate pyrophosphoxylase. The orotidine-5-phosphate formed is the immediate precursor of uridine-S-phos-phate (UMP) which occupies a central position in pyrimidine synthesis. After some degree of transformation, UMP can be converted to cytosine-5-phosphate (CMP) or thymine-5-phosphate (TMP). It might be noted here that the purine... [Pg.24]

Kimura and coworkers established that Zn + complexes of macrocyclic polyamines such as Zn -cyclen 1 (ZnL ) + are stable in aqueous solutions at neutral pH (Scheme 3.2) and are good models for Zn + enzymes such as carbonic anhydrase, alkaline phosphatase, class II aldolases, and related enzymes (cyclen = 1,4,7,10-tet-raazacyclododecane)." These Zn + complexes form 1 1 complexes (1-X complexes) with various anions, including carboxylates, imides such as thymine, phosphates, and thiolates. - ... [Pg.34]

Section 28 8 The most common form of DNA is B DNA which exists as a right handed double helix The carbohydrate-phosphate backbone lies on the outside the punne and pyrimidine bases on the inside The double helix IS stabilized by complementary hydrogen bonding (base pairing) between adenine (A) and thymine (T) and guanine (G) and cytosine (C)... [Pg.1188]

The primary stmcture of DNA is based on repeating nucleotide units, where each nucleotide is made up of the sugar, ie, 2 -deoxyribose, a phosphate, and a heterocycHc base, N. The most common DNA bases are the purines, adenine (A) and guanine (G), and the pyrimidines, thymine (T) and cytosine (C) (Fig. 1). The base, N, is bound at the I -position of the ribose unit through a heterocycHc nitrogen. [Pg.248]

S >Olmethaxytrltyl>2 -d oxythylmldlne-3 -phosphate (3). A sohjllon ot 1 mmol ot 1 (T thymine, DMT-4,4 -dimethoxyti1tyl) in dioxane (8 mL), pyridine (1 mL) and a slight excess ot 2-chloro-5,6-benzo-1,3-dioxaphosphorfn-2-one 2 (1 mi. ot a 1.2S M solution in dioxane) was stirred at 20 C After 5 mki TLC Indicated complete conversion oM Into 3 with zero mobility. Water was added and after work up 3 was isolated in 88% yield. [Pg.396]

DNA is made up ot two intertwined strands. A sugar-phosphate chain makes up the backbone of each, and the two strands are joined by way of hydrogen bonds betwen parrs of nucleotide bases, adenine, thymine, guanine and cytosine. Adenine may only pair with thymine and guanine with cytosine. The molecule adopts a helical structure (actually, a double helical stnrcture or double helix ). [Pg.232]

Kinoshita, Imoto etal.11 14) synthesized other anionic models, 5 (APVP), CPVP, UPVP, TPVA, HPVA, THPVA, and 6 (AMPPVA), by the polymer reaction of N-eoupled(2-dihydrogenphosphate)-ethylderivatives of nucleic acid bases (or adenosine-5 -phosphate, AMP) with polyvinylaleohol. A, C, U, T, H, and TH denote adenine, cytosine, uracil, thymin, hypoxanthine, and theophylline, respectively. The authors reported the apparent hypochromities of 3 to 16% for many kinds of mixtures of the models and DNA or RNA, as compiled in Table 1. However, for the mixtures APVA + RNA, HPVA + RNA HPVA + DNA, THPVA + RNA, CPVA + DNA and CPVA + RNA, no hypochromicity was detected. [Pg.137]

Figure 35-1. A segment of one strand of a DNA molecule in which the purine and pyrimidine bases guanine (G), cytosine (C), thymine (T), and adenine (A) are held together by a phosphodiester backbone between 2 -de-oxyribosyl moieties attached to the nucleobases by an W-glycosidic bond. Note that the backbone has a polarity (ie,a direction). Convention dictates that a single-stranded DNA sequence is written in the 5 to 3 direction (ie, pGpCpTpA, where G, C,T, and A represent the four bases and p represents the interconnecting phosphates). Figure 35-1. A segment of one strand of a DNA molecule in which the purine and pyrimidine bases guanine (G), cytosine (C), thymine (T), and adenine (A) are held together by a phosphodiester backbone between 2 -de-oxyribosyl moieties attached to the nucleobases by an W-glycosidic bond. Note that the backbone has a polarity (ie,a direction). Convention dictates that a single-stranded DNA sequence is written in the 5 to 3 direction (ie, pGpCpTpA, where G, C,T, and A represent the four bases and p represents the interconnecting phosphates).
Hydrolytic cleavage of the glycosidic bond holding the DNA bases to the sugar-phosphate backbone is typically a very slow process under physiological conditions (pH 7.4 37°C). Loss of the pyrimidine bases cytosine and thymine occurs with a rate constant of 1.5 X 10 s (ty2 = 14,700 years), while loss of the purine bases guanine and adenine proceeds slightly faster, with a rate constant of 3.0 X... [Pg.338]

Nucleotides can be linked together into oligonucleotides through a phosphate bridge at the 5 position of one ribose unit and the 3 position of another. The purine bases, adenine and guanine, have two heterocyclic rings, while the pyrimidines cytosine, thymine, and uracil have one. The structure of adenosine monophosphate is shown in Figure 11. [Pg.236]

The photochemistry of the polynucleotides has been elucidated primarily by studies of the photochemical behavior of the individual pyrimidine and purine bases (the ribose and phosphate groups would not be expected to undergo photochemical reactions in this wavelength range). These studies have shown the pyrimidines (cytosine and thymine) to be roughly ten times more sensitive to UV than the purines (adenine and guanine.) Thus we would expect most of the photochemistry of the nucleic acids to result from the action of light on the pyrimidines. [Pg.590]

Adenine (A) Cytosine (C) Guanine (G) Thymine (T) Adenine (A) Cytosine (C) Guanine (G) Uracil (U) Deoxyribose Ribose Phosphate groups... [Pg.371]

Nucleotide A subunit of DNA or RNA consisting of a purine (adenine and guanine) or a pyrimidine base [thymine (DNA only), uracil (RNA only) and cytosine], a phosphate molecule, and a sugar molecule (deoxyribose in DNA and ribose in RNA). [Pg.536]

There are basically two types of salvage. The first involves attachment of the base to PRPP with the formation of pyrophosphate. This pathway is available for salvage of purines and uracil but not for cytosine or thymine. The other pathway involves attachment of the base to ribose 1-phosphate, which occurs to some extent for most of the purines and pyrimidines. This second pathway requires the presence of specific... [Pg.244]

Phenylglyoxal and alkoxyphenylglyoxals react selectively with the guanine moiety of nucleosides and nucleotides in phosphate buffer (pH 7.0) at 37°C for 5-7 min to give the corresponding fluorescent derivatives [12-15], as shown in Figure 6. Other nucleic acid bases and nucleotides (e.g., adenine, cytosine, uracil, thymine, AMP, CMP) do not produce derivatives under such mild reaction conditions. The fluorescent derivative emits chemiluminescence on oxidation with di-methylformamide (DMF) and H202 at pH 8.0-12 [14, 15],... [Pg.563]

A nucleoside consists of a purine or pyrimidine base linked to a pentose, either D-ribose to form a ribonucleo-side or 2-deoxy-D-ribose to form a deoxyribonucleoside. Three major purine bases and their corresponding ribo-nucleosides are adenine/adenosine, guanine/guanosine and hypoxanthine/inosine. The three major pyrimidines and their corresponding ribonucleosides are cytosine/ cytodine, uracil/uradine and thymine/thymidine. A nucleotide such as ATP (Fig. 17-1) is a phosphate or polyphosphate ester of a nucleoside. [Pg.303]


See other pages where Thymine-5-phosphate is mentioned: [Pg.561]    [Pg.671]    [Pg.283]    [Pg.327]    [Pg.677]    [Pg.319]    [Pg.651]    [Pg.31]    [Pg.66]    [Pg.136]    [Pg.392]    [Pg.244]    [Pg.305]    [Pg.396]    [Pg.936]    [Pg.659]    [Pg.252]    [Pg.83]    [Pg.371]    [Pg.498]    [Pg.64]    [Pg.38]    [Pg.654]    [Pg.39]    [Pg.177]    [Pg.55]    [Pg.210]    [Pg.472]    [Pg.445]    [Pg.10]    [Pg.47]    [Pg.33]    [Pg.34]    [Pg.454]   
See also in sourсe #XX -- [ Pg.22 , Pg.373 ]




SEARCH



Thymine

© 2024 chempedia.info